OH column abundance over Table Mountain Facility, California: Intra-annual variations and comparisons to model predictions for 1997–2001

Franklin P. Mills,1,2 Richard P. Cageao,1 Stanley P. Sander,1,3,4 Mark Allen,1,4 Yuk L. Yung,4 Ellis E. Remsberg,5 James M. Russell III,6 and Ulf Richter3

Received 4 February 2003; revised 14 July 2003; accepted 11 August 2003; published 24 December 2003.

[1] Measurements of the OH column abundance over the Jet Propulsion Laboratory’s Table Mountain Facility (TMF) have been made since July 1997 at 10°–80° solar zenith angle using a Fourier transform ultraviolet spectrometer. The measured OH column at any solar zenith angle is typically larger in the afternoon than in the morning. The variations observed in the OH column abundance appear to result from changes in atmospheric conditions on a daily or longer timescale. The larger observed variations are statistically significant. Sensitivity coefficients describing how the OH column abundance is expected to change in response to changes in the concentrations of H2O, O3, NO, CO, and CH4 have been calculated on the basis of an analytic model. On the basis of these sensitivity coefficients and Halogen Occultation Experiment observations of O3, the net sensitivity of the OH column abundance to variations in O3 should be close to zero. The observed OH column abundance over TMF increased by about 25% from July 1997 to December 2001. This interannual trend in OH column abundance is not consistent with calculations that incorporate observed trends in H2O and O3 and is at least a factor of 2 larger than the calculated difference between solar minimum and maximum. Comparisons between measured and calculated normalized OH column abundances suggest that the sensitivity of OH to variations in H2O may be a factor of 2 larger than predicted in present models and that there is some other major driver for the observed variability in the OH column abundance that was not included in the present analysis. INDEX TERMS: 0317 Atmospheric Composition and Structure: Chemical kinetic and photochemical properties; 0340 Atmospheric Composition and Structure: Middle atmosphere—composition and chemistry; 0394 Atmospheric Composition and Structure: Instruments and techniques; 7536 Solar Physics, Astrophysics, and Astronomy: Solar activity cycle (2162); KEYWORDS: hydroxyl, mesosphere, photochemistry

1. Introduction

[2] Although it contains only about 15% of the total ozone column, the distribution of ozone in the 30–70 km altitude region of the atmosphere affects global stratospheric temperatures and circulation [Müller et al., 1999]. This region also is believed to be the region in which the first evidence for a recovery of ozone toward pre-industrial levels may be observed [Hofmann et al., 1999]. To properly identify the recovery of ozone from anthropogenic influences, the natural chemistry must be understood. Ozone loss in the upper stratosphere and lower mesosphere is believed to be dominated by reactions involving chlorine oxides (ClOx) and odd-hydrogen species (HOx = H + OH + HO2 + H2O2), so a good understanding of both HOx and ClOx chemistry is needed. Measurements of OH are a direct probe of the chemistry in this region because OH is a key species in many of the most important reactions. The most recent observations of OH, HO2, and O3 have not agreed satisfactorily with photochemical model calculations based on existing laboratory data [Jucks et al., 1998; Sandor and Clancy, 1998; Conway et al., 2000], and significant revisions to the standard chemistry for the mesosphere and upper stratosphere have been proposed. Those studies, however, examined measurements collected over limited
periods of time, so they have sampled only a small fraction of the range of conditions that may exist in the stratosphere and mesosphere.

[1] One additional tool that may be used for analyzing the daytime photochemistry in the upper stratosphere and mesosphere is column-integrated measurements of OH abundance collected throughout the day for at least several days per month over an extended period of time. A large majority of the OH column is at 30–70 km altitude, so the OH column abundance should be sensitive to the photochemical state of this region. This paper describes the first 3.5 years of measurements of the OH column abundance over the Jet Propulsion Laboratory’s (JPL) Table Mountain Facility (TMF) at 34.4N, −117.7E. An analytical photochemical model [Pickett and Peterson, 1996] was updated and used to determine the primary geophysical parameters that should control variations in OH column abundance. These were found to be O3 and H2O. We then compare the observed intra-annual variations in OH column to calculations based on observed variations in the precursor species, O3 and H2O, with the aid of the updated analytical photochemical model.

[2] Profiles for OH in the stratosphere and mesosphere have been measured by several groups since the early 1980s [Canty et al., 2000]. Three recent studies [Jucks et al., 1998; Conway et al., 2000; Summers et al., 1997] have been particularly important because OH profiles were measured simultaneously with those of other relevant species (O3, H2O, and/or HO2). These three studies concluded that present photochemical models do not accurately capture the actual HOx chemistry in the stratosphere and mesosphere. The most recent study [Conway et al., 2000] concluded that none of the previously proposed revisions to the accepted chemical kinetic rates could satisfactorily explain the differences between calculated and measured OH abundances throughout the upper stratosphere and mesosphere.

[3] OH column measurements have been made over Fritz Peak Observatory, Colorado, (FPO) since 1977 [Burnett and Burnett, 1996], over Tokyo, Japan, in 1992–1995 [Iwagami et al., 1998], and over Socorro, New Mexico (NMT), since 1996 [Burnett and Minschwaner, 1998; Canty et al., 2000]. Long-term measurement records, such as these, are necessary for determining statistically significant correlations between OH column abundance and climatic or dynamic changes in the upper stratosphere and mesosphere. Temporal variations in the OH column abundance on seasonal to decadal time scales have been reported for all three sites [Burnett and Burnett, 1996; Iwagami et al., 1998]. These temporal variations have not been satisfactorily explained in terms of relevant geophysical parameters, partly because of the difficulties involved in interpreting column measurements.

[4] The column abundance of OH over Table Mountain Facility (TMF), California, has been measured regularly since July 1997 using the Fourier transform ultraviolet spectrometer [Cageao et al., 2001]. One motivation for initiating these measurements is the large (and unexplained) differences among the previous OH column measurements and the significant differences between all of the OH column measurements and model calculations [Iwagami et al., 1998]. For example, the annual average OH column observed for 1998–2000 over TMF is 10–20% larger than that observed by another group over Tokyo for 1992–1995; 30–65% smaller than that observed by other groups over Colorado and New Mexico for 1980–1996; and 15–30% smaller than calculated by photochemical models [Mills et al., 2002]. However, three different types of instruments and two different measurement approaches were used at these four sites. All OH column measurements require a method for inferring (or removing) the exoatmospheric solar spectrum which has deep Fraunhofer lines that interfere with the terrestrial OH features. As discussed by Cageao et al. [2001] and Mills et al. [2002], the measurement and analysis methods used for the TMF spectral data are extremely effective in canceling the strong solar Fraunhofer lines which interfere with terrestrial OH absorption measurements. All of the OH column measurements are subject to systematic uncertainties. Some, such as the uncertainties on the oscillator strengths for the OH lines used for the column observations, are the same for all of the measurement sites. Others, such as corrections for stray light, will differ for each site. To minimize the influence of possible systematic errors, the analysis in this paper will focus on normalized deviations of the OH column from the average observed over TMF. Time-dependent modeling of the diurnal variation and the absolute OH column abundance are underway and will be published when completed.

[5] The goals for this paper are to characterize the first 3.5 years of the TMF OH column measurements and assess how well model calculations can reproduce the observed, statistically significant variations in the OH column. Observed intra-annual variations in O3 and H2O in the stratosphere and mesosphere derived from measurements by the Halogen Occultation Experiment (HALOE) [Russell et al., 1993] on the Upper Atmosphere Research Satellite (UARS) will be used to calculate expected intra-annual variations in the OH column abundance. These calculations are then compared to the observed intra-annual variations in the OH column.

[6] Section 2 briefly describes the OH column measurements made over TMF. Section 3 presents our analysis of intra-annual variations in the OH column over TMF. Section 4 describes the analytic photochemical model, and section 5 how it was used to derive sensitivity coefficients for the primary geophysical parameters governing the OH column abundance in models: H2O and O3 concentrations. The sensitivity coefficients quantitatively derived from the analytic model relate variations in H2O and O3 concentrations to the predicted effect on the OH column abundance. Section 6 uses these sensitivity coefficients to compare the observed variations in the OH column over TMF with predictions based on observed variations in H2O and O3 concentrations near TMF.

2. Observations

[7] Since July 1997, the OH column abundance has been measured over TMF using the Fourier transform ultraviolet spectrometer (FTUVS) [Cageao et al., 2001; Mills et al., 2002]. Figure A1 in the auxiliary material1 shows the dates

1Auxiliary material is available via Web browser or via Anonymous FTP from ftp://aguf/agu/pub/submission.eosupp about.html.
and solar zenith angles (SZA) for morning measurements. Afternoon data coverage is similar, Figure A2. The collecting optics for the FTUVS were upgraded in September–December 1999 so no data were collected during this period.

[10] The FTUVS acquires spectra of the Sun from the ground by viewing the east and west limbs of the Sun, alternately, for 15 min each. The Doppler shift induced by the rotation of the Sun shifts the solar Fraunhofer lines observed at the east and west limbs of the Sun relative to the telluric OH lines. A properly shifted ratio of a pair of east and west limb spectra then removes the solar Fraunhofer lines and leaves only features due to the telluric OH. The OH features are fit with a calculated spectrum to derive the line-of-sight OH column abundance. The calculated spectrum includes a model of the instrument line shape and the expected Doppler broadening based on a standard atmospheric temperature profile. The line-of-sight OH column abundance is divided by cos(SZA) to determine the vertical OH column abundance [Cageao et al., 2001]. The FTUVS at TMF has an unapodized spectral resolving power near 500,000 and integration time of 30 min for a pair of east and west solar limb spectra [Cageao et al., 2001]. The measured absorption is converted to OH column abundance using the oscillator strengths for the individual rotational lines in the $\text{A}^2\Sigma^+ \rightarrow \text{X}^2\Pi(0, 0)$ band for OH [Cageao et al., 1997]. The band oscillator strength used in the present analysis is within 0.5% of those used by other groups [Burnett and Burnett, 1981; Iwagami et al., 1995]. The OH lines observed by the FTUVS are optically thin (total column absorption \sim1%) so the measurements are sensitive to the entire OH column.

[11] At least seven OH lines in the $\text{A}^2\Sigma^+ \rightarrow \text{X}^2\Pi(0, 0)$ band are observed. This paper focuses on results from the P$_1$(1) line (32440.5741 cm$^{-1}$) and the Q$_1$(2) line (32458.5918 cm$^{-1}$) [Stark et al., 1994]. The P$_1$(1) line was used by other groups because the solar spectrum has less curvature near the P$_1$(1) line and it gave the most reliable (“stable”) results [Iwagami et al., 1995; Notholt et al., 1997]. Observations of the Q$_1$(2) line have not been reported by previous investigators. The TMF annual averages derived from the P$_1$(1) and Q$_1$(2) lines agree [Mills et al., 2002]. The other five OH lines observed at TMF are weaker and have greater interference from solar lines. Reliable retrieval techniques using the weaker lines are still being developed and were not included in the present analysis.

[12] Figures A3 and A4 summarize all of the measurements of OH column abundance that were made over TMF from July 1997 to December 2001. A strong, approximately linear dependence on SZA is present in the TMF data, as has been reported for other data sets [Burnett and Burnett, 1981]. The range of observable SZAs for each season is indicated by the symbols, and Figure A3 indicates the variability within each season is comparable in magnitude to that between seasons at any given SZA.

[13] The primary source of uncertainty in the measured OH column is the spectral fit [Cageao et al., 2001]. Figure A5 is a histogram of the 2σ spectral fit uncertainty for P$_1$(1) data collected after June 1997. Figure A6 shows the spectral fit uncertainties for Q$_1$(2) data. The median spectral fit uncertainty (2σ) for P$_1$(1) data is 14% and for Q$_1$(2) data is 17%. The 2σ random uncertainty from all other sources (root-sum-square) is 14% [Cageao et al., 2001], and the median of the total (root-sum-square) random uncertainty (2σ) is 20%. The 2σ systematic uncertainty from all sources (root-sum-square) is estimated to be 12% [Cageao et al., 2001].

3. Measurement Results

[14] The OH column abundance observed over TMF (Figures A3 and A4) is a strong function of solar zenith angle (SZA) but statistically significant variations are observed at all SZA. To characterize the observed variations and minimize the susceptibility to systematic uncertainties [Mills et al., 2002], the typical solar zenith angle dependence must be removed. This has been accomplished by calculating linear least squares fits, separately, for the morning and afternoon measurements (Figures 1 and A7). The measured OH column abundances are then divided by the appropriate empirical fit. Hereinafter, the resultant fractional deviations from the empirical fits are referred to as “normalized OH column abundances.”

[15] Figures 1 and A7 have two different empirical fits. The linear fit was calculated for 10°–65° solar zenith angle where the spectra have the best signal-to-noise ratio so the measured OH columns have the best quality. The second-order polynomial fit was calculated for 10°–85° solar zenith angle. The two fits agree to within the uncertainty on the linear fit for most of the 10°–65° solar zenith angle range, so a higher-order fit is not justified and we believe the linear fit adequately describes the overall TMF data set for 10°–65° solar zenith angle even though model calculations [Canty et al., 2000] predict a non-linear relationship between OH column and solar zenith angle. The best linear fits for the P$_1$(1) OH column measurements over TMF for July 1997 to December 2001 at 10°–65° SZA with spectral fit uncertainty \leq36% are given by equations (1) and (2).

$$m_1 = -5.87(\pm 0.29) \times 10^{11} \times \text{SZA} + 7.60(\pm 0.14) \times 10^{13} \quad (1)$$

$$a_1 = -4.63(\pm 0.32) \times 10^{11} \times \text{SZA} + 7.38(\pm 0.16) \times 10^{13} \quad (2)$$

where SZA = solar zenith angle, m_1 = morning P$_1$(1) OH column (cm$^{-2}$), and a_1 = afternoon P$_1$(1) OH column (cm$^{-2}$). The best linear least squares fits for the Q$_1$(2) OH column measurements over TMF for July 1997 to December 2001 at 10°–65° SZA with spectral fit uncertainty \leq41% (Figures A8 and A9) are given by equations (3) and (4).

$$m_0 = -6.32(\pm 0.35) \times 10^{11} \times \text{SZA} + 8.15(\pm 0.17) \times 10^{13} \quad (3)$$

$$a_0 = -5.60(\pm 0.39) \times 10^{11} \times \text{SZA} + 8.31(\pm 0.19) \times 10^{13} \quad (4)$$

where m_0 = morning Q$_1$(2) OH column (cm$^{-2}$), and a_0 = afternoon Q$_1$(2) OH column (cm$^{-2}$). The annual average OH column derived from observations of the P$_1$(1) and Q$_1$(2) OH lines (as described by m_1, a_1, m_0, and a_0) agree to within their mutual uncertainties [Mills et al., 2002], and the recently revised line strengths for the two OH lines [Gillis et al., 2001] are expected to improve the agreement of these
annual averages by about 2–3%. The shallower slope for the fit to the afternoon OH column (when compared to the morning OH column) is true for almost all months for both the P1(1) and Q1(2) lines.

Deviations from the empirical fits shown in Figures 1 and A7 are believed to be primarily due to geophysical variations in the atmosphere. To facilitate detection of variability patterns on timescales longer than 1 day and to enable comparison with model calculations, the normalized P1(1) OH column abundances were averaged to create morning and afternoon daily averages (Figure A10). Statistically significant deviations from the empirical mean of up to +40% and −50% are observed and variability on at least week-to-week or monthly timescales is readily apparent.

Inspection of the normalized P1(1) OH column abundances showed no obvious dependence on solar zenith angle, and correlation tests among the normalized P1(1) OH abundances for most solar zenith angles showed high correlations. The morning and afternoon daily average normalized P1(1) OH columns also are highly correlated (Figure 2), with a slope near unity and an intercept near zero (equation (5)).

$$a_{1m} = 0.95(±0.06)m_{1m} + 0.01(±0.01)$$ \[5\]

where a_{1m} = daily average normalized afternoon P1(1) OH column abundance and m_{1m} = daily average normalized morning P1(1) OH column abundance. The only P1(1) data with a lower degree of correlation than is shown in Figure 2 are data collected at ≥50° solar zenith angle in the morning. Morning data collected at solar zenith angles ≥45° over FPO have been the subject of several studies [Burnett and Minschwaner, 1998]. For the TMF data set, however, these early morning data have the lowest signal-to-noise ratios because they have the longest slant paths through the atmosphere and the OH column abundance is smallest. Broadband atmospheric attenuation, such as Rayleigh scattering, and O3 absorption near 308 nm is largest at the longest slant paths.) Thus the early morning data have the poorest quality spectral fits. On the basis of the lack of a clear temporal pattern in Figure A11, we believe that the lower degree of correlation between early morning TMF data and TMF data collected throughout the remainder of the day is due to the poorer quality of the early morning measurements.

The high degree of correlation observed among OH column variations at all solar zenith angles and between morning and afternoon strongly suggest that the observed variations are not random fluctuations. These results also indicate the daily average normalized P1(1) OH column abundances adequately capture the variability in the measured P1(1) OH column abundances and suggest that the observed changes in the normalized P1(1) OH column occur “uniformly” throughout the day. On the basis of the high correlation between the morning and afternoon averages for the P1(1) OH line measurements, the normalized OH columns from the entire day have been averaged (Figure 3). A statistically significant increase in the OH
The column abundance over TMF from 1997 to 2001 is evident and the linear fit shown in Figure 3 indicates the OH column abundance over TMF increased by about 25% (difference divided by mean) from July 1997 to December 2001. The smallest OH column abundances were recorded during one week periods in April and July 2000, shortly after intense solar storms. The standard deviation for the intra-annual variation in the daily average normalized P\(_1\)(1) OH column abundance over TMF after subtracting the linear fit to the interannual trend is about 0.12 and the peak-to-peak amplitude of the daily average variation is \(\sim 30–35\%\).

\[\text{Equation (6)}\]

where \(a_{0n}\) = daily average normalized afternoon Q\(_1\)(2) OH column abundance and \(m_{0n}\) = daily average normalized morning Q\(_1\)(2) OH column abundance. There is a correlation between the daily average normalized OH columns from the P\(_1\)(1) and Q\(_1\)(2) OH lines (Figure A13), but the slope for the fit relating the P\(_1\)(1) and Q\(_1\)(2) results (equation (7)) differs from 1.0 by a statistically significant amount.

\[\text{Equation (7)}\]

where \(d_{0n}\) = P\(_1\)(1) daily average normalized OH column and \(d_{1n}\) = Q\(_1\)(2) daily average normalized OH column. This indicates the deviations from the mean for the Q\(_1\)(2) OH line are typically only 82% of those for the P\(_1\)(1) OH line.

The differences between the results from the P\(_1\)(1) and Q\(_1\)(2) lines can be partially attributed to differences in removing the background solar Fraunhofer spectrum, but other possible sources for the observed differences are still
under review. On the basis of the known difficulties in properly removing the background solar Fraunhofer spectrum from the Q1(2) line measurements and the statistical analyses described above, the Q1(2) line measurements have not been used in the modeling portion of the present study. The recently revised line strengths [Gillis et al., 2001] should not significantly alter the normalized OH column abundances.

4. Photochemical Models

[21] Two photochemical models were used to interpret the intra-annual variations observed in the OH column over TMF: The Caltech/JPL numerical model [Allen et al., 1981] and an analytic model [Pickett and Peterson, 1996]. The numerical model provided estimates of the expected photochemical state of the atmosphere at selected solar zenith angles and the analytic model was used for sensitivity (perturbation) calculations about the numerical model results. The analytic model was more convenient for the sensitivity calculations than the numerical model because the analytic model does not incorporate the automated feedback processes that are present in the numerical model. Thus each of the parameters affecting OH concentrations could be varied independently.

[22] The numerical model was initialized using species profiles measured by the Atmosphere Trace Molecule Spectroscopy (ATMOS) Experiment in 1985 [Allen and Delitsky, 1991]. The one-dimensional numerical model was run to diurnally averaged steady state with vertical eddy diffusion, then run in a diurnally varying mode with no transport until the OH concentrations at all model levels between 0 and 84 km altitude were diurnally repetitive to within 0.5%. The kinetic rates and photolysis cross sections [DeMore et al., 1997], transmission and absorption in the O2 Schumann-Runge Band [Allen and Frederick, 1982; Froidvauex et al., 1985], and the solar fluxes [Allen and Delitsky, 1991] were standard values and parameterizations for the Caltech/JPL model. The curvature of the Earth’s atmosphere and local sunrise/sunset were accounted for in determining the photolysis rates at each altitude. Recently recommended changes in kinetic rates [Sandor et al., 2000] do not have a significant impact on the present calculations (section 5).

[23] The analytic photochemical model used for the present study was based on that developed by Pickett and Peterson [1996]. The primary assumptions are the same as for their model: (1) OH, H, and HO2 are in photochemical steady state, (2) HNO3 is in photochemical steady state, (3) O(3P) and O(1D) are in photochemical steady state, and (4) each CH3 radical produced is assumed to give a net yield of one HO2 from subsequent (unmodeled) reactions. The analytic model includes no vertical transport. The nominal concentrations (except for OH), kinetic reaction rates, and photolysis rates at all altitudes were taken from the numerical model. The analytic model assumes production of HO2 (= H + OH + HO2) is dominated by photolysis of H2O and reactions of O(1D) with H2O and CH4. Loss of HO2 is assumed to be dominated by reaction of OH with HO2. Reactions of OH with NO2 to form HNO3 and of OH with HNO3 were also included. The photolysis and kinetic reactions included in the analytic model are given in Table 1.

Table 1. Reactions for the Analytic OH Model

| Reaction | Rate Constant
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>O3 + hv</td>
<td>J1a</td>
</tr>
<tr>
<td>O3 + hv</td>
<td>J1b</td>
</tr>
<tr>
<td>O + hv</td>
<td>J2</td>
</tr>
<tr>
<td>H2O + hv</td>
<td>J3</td>
</tr>
<tr>
<td>HNO3 + hv</td>
<td>J4</td>
</tr>
<tr>
<td>O(1D) + N2</td>
<td>k1a</td>
</tr>
<tr>
<td>O(1D) + O2</td>
<td>k1b</td>
</tr>
<tr>
<td>O(1D) + H2O</td>
<td>2 k2</td>
</tr>
<tr>
<td>OH + HO2</td>
<td>k3</td>
</tr>
<tr>
<td>O + O2</td>
<td>k4</td>
</tr>
<tr>
<td>OH + O</td>
<td>k5</td>
</tr>
<tr>
<td>OH + O2</td>
<td>k6</td>
</tr>
<tr>
<td>OH + CO</td>
<td>k7</td>
</tr>
<tr>
<td>HO2 + O</td>
<td>k8</td>
</tr>
<tr>
<td>HO2 + O1</td>
<td>k9</td>
</tr>
<tr>
<td>HO2 + NO</td>
<td>k10</td>
</tr>
<tr>
<td>OH + HNO3</td>
<td>k11</td>
</tr>
<tr>
<td>H + O1</td>
<td>k12</td>
</tr>
<tr>
<td>H + O2</td>
<td>k13</td>
</tr>
<tr>
<td>OH + NO2</td>
<td>k14</td>
</tr>
<tr>
<td>O(1D) + CH4</td>
<td>k15</td>
</tr>
<tr>
<td>OH + CH4</td>
<td>k16</td>
</tr>
</tbody>
</table>

*Reaction numbering system is the same as that used by Pickett and Peterson [1996].

A net yield of one HO2 per CH3 radical produced was assumed, as was done by Pickett and Peterson [1996].

Table 1. The reaction numbering system used by Pickett and Peterson [1996] has been adopted for the present analytic model. The analytic model’s absolute OH concentrations agreed well (<5% difference) with those from the numerical model at 30–60 km altitude at all three solar zenith angles that were used for the sensitivity analyses (morning 60°, noon, and afternoon 65°). At noon, the analytic model’s absolute OH concentrations were within 5% of the numerical model’s at 25–70 km altitude. Differential calculations, such as those used in section 6, should agree even more closely for the two photochemical models at 25–70 km altitude where 65–70% of the OH column lies.

[24] The present analytic model differs in three ways from the Pickett and Peterson [1996] model. First, the spin-forbidden channel for O3 photolysis was included, photolysis reaction 1b. Second, the different efficiencies for N2 and O2 as third bodies were included for kinetic reactions 1 and 4. Third, kinetic reaction 1 was included properly as a source of O(3P) atoms. Equation (2) of Pickett and Peterson [1996] is therefore modified to be

\[
[O] = \frac{(J_{1a} + J_{1b} + J_2)O_3}{(k_{4a}[N_2] + k_{4b}[O_2])O_2}
\]

None of the subsequent equations in Pickett and Peterson [1996] are affected by this correction, but the O and OH concentrations from the present model will differ by a small amount from those calculated using the Pickett and Peterson [1996] model.

[25] For the assumptions stated above, the OH concentration is determined by finding the positive root of equation (9) [Pickett and Peterson, 1996]. Solutions for this equation were computed numerically.

\[
\alpha[OH]^2 + \beta[OH] + \gamma = 0
\]
production of HOX is increasingly dominated by \(J_3 \); below 40 km, [OH] is dependent on both [O\(_3\)] and [NOX].

5. Model Sensitivity Analyses

[27] Sensitivity calculations using the analytic model were examined to identify the physical quantities that are expected to control the OH column abundance and to assess quantitatively how well the observed variations in the OH column over TMF could be explained by observed variations in controlling species, such as H\(_2\)O and O\(_3\). The analytic model was more convenient for this purpose than the numerical model because the analytic model does not incorporate the automated feedback processes that are present in the numerical model. Thus each of the parameters affecting OH concentrations could be varied independently.

[28] Linear sensitivity coefficients for each of the controlling species in equation (9) were calculated at each altitude using equation (20).

\[
S_{ij} = \frac{\Delta \left(\ln[OH]_j \right)}{\Delta \left(\ln[n_i] \right)}
\]

where \(j \) defines the altitude layer within the analytic model, \(i \) is the controlling species whose abundance is being varied, and \(\ln \) is the natural logarithm. Equation (20) assumes the response function is linear and the tests we conducted by perturbing the concentrations of H\(_2\)O, O\(_3\), NO, CH\(_4\), HNO\(_3\), and CO by \(\pm 10\% \) and \(\pm 25\% \) indicate there are no significant deviations from linearity over this range.

[29] In addition to the “local” effect of changes in the controlling species on the OH concentration, the partial column of O\(_3\) above each altitude affects the radiation field at lower altitudes and thus affects the production rate for OH via the production of O(1D). The photolysis rate for production of O(1D) from O\(_3\) is governed by the optical depth above each level in the atmosphere which is controlled primarily by the overhead partial column of O\(_3\) for the relevant wavelengths. For example, if the O\(_3\) above 40 km altitude is decreased uniformly by 25\%, then the optical depth above 40 km altitude will be decreased by 25\%. This will increase the actinic flux at 40 km altitude that can photolyze O\(_3\) to produce O(1D) and thus will increase the photolysis rate, \(J_1 \), at 40 km altitude. A larger value for \(J_1 \) at 40 km altitude will increase the OH concentration at 40 km altitude. Thus a decrease in the O\(_3\) overhead above 40 km altitude leads to an increase in the OH concentration at 40 km altitude and an increase in the OH column abundance. Consequently, the “local photolytic” and “radiative” effects of changes in O\(_3\) concentrations have opposite sign and, as will be shown, can mostly cancel each other when integrated over the entire column. Because the overhead partial column of O\(_3\) determines the radiation field at each level at the relevant wavelengths for production of O(1D) and because O\(_3\) concentrations can be observed remotely (e.g., by HALOE) while vertical profiles of the actinic flux are not typically measured, the sensitivity of the OH column to the actinic flux has been expressed in terms of the overhead partial column of O\(_3\) (“OverO\(_3\)” (equation (21)).

\[
S_{j}(\text{OverO}_3) = \frac{\Delta \left(\ln[OH]_j \right)}{\Delta \left(\ln[J_{1a} + J_{1b}] \right)} \frac{\Delta \left(\ln[OH]_j \right)}{\Delta \left(\ln[OverO_3]_j \right)}
\]
The relationship between J_1 and OH was approximately linear over the ±25\% range that was examined but the relationship between J_1 and “OverO3” was not. This is the only significant uncertainty in any of the derived sensitivity coefficients other than the limitations imposed by the assumptions used in deriving the analytic model.

To determine the effect that a change in a physical quantity at any altitude will have on the OH column, the sensitivity coefficient, S_{ij}, must be multiplied by the fraction of the OH column at that altitude to derive a weighting function (equation (22)).

$$W_{ij} = S_{ij} \frac{[OH]_i \Delta z_j}{\Sigma[OH]_i \Delta z_j}$$

(22)

where Δz_j is the thickness of the altitude layer. The thickness of all altitude layers was 2 km for all of our calculations.

The weighting function, W_{ij}, can be multiplied by the observed fractional change in a controlling species, i, at any altitude to determine the expected fractional change in the OH column. The expected fractional change in the OH column due to changes in multiple controlling species is then given by equation (23).

$$\Delta (\ln OH_i) = \Sigma_j S_{ij} \Delta (\ln [i]_j) W_{ij}$$

(23)

where OH$_i$ is the OH column abundance. The weighting functions thus can be combined with observed changes in species concentrations (e.g., from HALOE) to calculate the expected fractional change in the OH column for comparison with the observed daily average variations as is discussed in the next section.

As an initial assessment of which controlling species have significant influence on the OH column abundance, column sensitivity coefficients were calculated using equation (24).

$$S_{ic} = \Sigma_j \frac{\Delta (\ln [OH_i])}{\Delta (\ln [i]_j)} \frac{[OH]_i \Delta z_j}{\Sigma[OH]_i \Delta z_j}$$

(24)

where the fractional change in $[i]_j$ was assumed to be the same at all altitudes, ±25\%. This range encompasses the range of variability expected for the primary physical quantities. The results from these column sensitivity calculations (Table 2, column 2) are normalized so they indicate the fractional change in the OH column abundance that would result if each physical quantity was changed by 100\% at all altitudes (0–130 km). A negative sensitivity coefficient means the OH column change is opposite in sign to the change in that physical quantity. Column sensitivity coefficients for three times of day (morning at 60° SZA, noon at 30° SZA, and afternoon at 65° SZA) were calculated using OH profiles that span the range of measurements reported by Pickett and Peterson [1996] and Conway et al. [2000]. Column sensitivity coefficients also were calculated for the noontime cases using recently proposed alternate kinetic rates [Sander et al., 2000, 2002; Summers et al., 1997]. The differences for H$_2$O, O$_3$, “OverO3,” and NO from the results in Table 2, column 2, were no more than 2\%. The three parameters that are predicted to have the greatest influence on the OH column abundance are [H$_2$O], [O$_3$], and “OverO3,” as expected [Pickett and Peterson, 1996].

The sensitivity coefficients (Figure 4) are independent of the OH profile but may vary during a day if the dominant chemistry at an altitude changes. Most were found to vary only slightly throughout the range of SZA at which the OH column measurements over TMF are made, such as those in Figures A14 and A15. The sensitivity coefficient for “OverO3” does vary significantly with the time of day (Figure A16). The sensitivity coefficients with the largest magnitudes are found at 15–20 km altitude where OH concentrations are most sensitive to the concentrations of

\[\text{Table 2. Sensitivity of Modeled OH Column}\]

<table>
<thead>
<tr>
<th>Physical Quantitya</th>
<th>Range of Column Sensitivity Coefficientb</th>
<th>Expected Variationc</th>
<th>Range of Calculated OH Column Responsed</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$_2$O</td>
<td>49–51%</td>
<td>±25%</td>
<td>±12%</td>
</tr>
<tr>
<td>O$_3$</td>
<td>35–45%</td>
<td>±25%</td>
<td>±(9–11)%</td>
</tr>
<tr>
<td>NO</td>
<td>4–11%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>−1 to −3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HNO$_3$</td>
<td>−1 to −5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_4$</td>
<td>0.8–1.2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OverO3</td>
<td>−26 to −89%</td>
<td>±25%</td>
<td>±(7 to 22)%</td>
</tr>
</tbody>
</table>

aPhysical quantity that was varied in the sensitivity calculation. Species abundances were changed at 0–130 km altitude. “OverO3” is the partial column abundance of O$_3$ above each layer in the photochemical model. “OverO3” was varied to determine the effect of changes in the radiation field on OH.

bLinearized OH column sensitivity coefficients (S_{ic}) computed using equation (24) and multiplied by 100 to express as a percentage. Values are a range, where the range encompasses the results from all six weighting functions shown in Figure 5.

cExpected typical range of variability for the parameter within the 11–81 km altitude region (Δ[ln[i]_j]).

dCalculated change induced in OH column abundance (= S_{ic} × Δ[ln[i]_j]) based on the expected variation in column 3.

\[\text{Figure 4. Sensitivity coefficients calculated as described in the text from the analytic model for changes in the concentrations of the species that are expected to influence OH concentrations at each altitude. All sensitivity coefficients were calculated for noontime conditions at spring equinox near 30°N latitude. The long-dashed line is for CO, the dash-dot-dot-dot line is for O$_3$, the dash-dot line is for HNO$_3$, the short-dashed line is for NO, the dotted line is for CH$_4$, and the solid line is for H$_2$O.}\]
HNO3, H2O, and O3. At higher altitudes, where a majority of the OH column is predicted to be, OH concentrations are most sensitive to the concentrations of H2O and O3 with a weaker sensitivity to NO.

The weighting functions are dependent on the shape of the OH profile. Three OH profiles that span the range of OH profiles (Figure A17) were selected for calculating the weighting functions for H2O, O3, and “OverO3” (Figure 5). The dependence on the shape of the OH profile is particularly significant for the H2O weighting function above 45 km altitude, and for H2O and O3, the weighting functions are significantly more sensitive to the OH profile than the smaller variations of the sensitivity coefficients with time of day. The weighting function for “OverO3” has comparable sensitivity to both the OH profile and the time of day (Figure 5a), and the weighting function for “OverO3” is negative at most altitudes. The magnitude of the weighting function for “OverO3” is approximately equal to that for O3 in the stratosphere, but the weighting function for “OverO3” has a greater dependence on the shape of the OH profile than is true for the O3 weighting function. Consequently, the net effect of changes in O3 concentrations will depend on the shape of the OH profile.

6. Discussion

6.1. Comparison With Other Available OH Column Measurements

Column OH abundances have been measured over a number of sites as noted in section 1. The four sites at which measurements have been made regularly for more than a year are Fritz Peak Observatory (FPO), Colorado, New Mexico Institute of Mining and Technology (NMT), New Mexico, University of Tokyo (Tokyo), Japan, and Table Mountain Facility (TMF), California. Significant, possibly systematic, differences have been noted among the column OH abundances measured over these sites [Mills et al., 2002; Iwagami et al., 1998]. To minimize the sensitivity to systematic errors, the present analysis has focused on the variations observed in the normalized OH column (i.e., deviations from the mean). A comparable analysis has not been completed for the Tokyo

Figure 5. (opposite) Weighting functions as defined in the text that give the response of the OH column to changes in (a) “OverO3” and to changes in (b) O3 and (c) H2O concentrations as a function of altitude for three OH profiles and two times of day. The noontime sensitivity coefficients were used for the curves shown in black, and the afternoon sensitivity coefficients were used for the curves shown in red (Figures A14, A15, and A16). The short-dashed line uses the empirical high-Sun OH profile from Canty et al. [2000], the dotted line uses the lower limit OH profile from MAHRSI’s 1997 measurements [Conway et al., 2000], and the solid line uses the OH profile from the February 1992 model calculation of Pickett and Peterson [1996]. These OH profiles span the expected range (Figure A17). For “OverO3” the differences between noon and afternoon are comparable in magnitude to the differences among the OH profiles. For O3 and H2O, the noon and afternoon curves are almost indistinguishable for almost all altitudes and all OH profiles.
data, and the published Tokyo data do not permit a detailed analysis similar to what has been presented here. However, the peak-to-peak intra-annual variation in P\(_1\) OH column abundance observed “near-noon” over Tokyo in 1992–1995 [Iwagami et al., 1998] is similar to that observed over TMF in 1997–2001. The FPO and NMT data have been analyzed using a methodology that is similar to that used in the present study, and T. Canty (personal communication, 2003) provided the monthly average normalized P\(_1\) OH column abundances measured over FPO for the August 1997 to November 2000 time period [Canty and Minschwaner, 2002] for comparison with the TMF measurements over that time period. The variability about a linear fit to the monthly average FPO data obtained from August 1997 to November 2000 has a standard deviation of 0.07. The variability about a linear fit to 30-day averages of the normalized P\(_1\) TMF OH data from August 1997 to November 2000 has a standard deviation of 0.08. A linear fit to the FPO data from August 1997 to November 2000 suggests an increase in the OH column abundance over FPO of about 30% (difference divided by mean) over this time period. The corresponding increase over TMF for the same time period based on the linear fit in Figure 3 is 20%. The difference in statistical variability is within the combined uncertainties on the two data sets. The difference in the magnitude of the interannual trends is not within the combined statistical uncertainties. This difference should be examined in greater detail after data has been collected for a longer time period over TMF to assess its geophysical significance.

6.2. Measured Interannual and Intra-annual OH Column Variations

[36] As shown in section 3, the OH column abundance over TMF increased by about 25% (difference divided by mean) from July 1997 to December 2001. A similar interannual trend has been reported for the OH column abundance observed over FPO for 1997–2000 [Canty and Minschwaner, 2002]. The measurement time period of the current TMF data set is too short to provide a definitive conclusion regarding the cyclicality, amplitude, correlation with solar cycle, or origin of the observed interannual trend. However, if the interannual variation is cyclical and is connected to the solar cycle, then the amplitude of the increase in OH column abundance that was observed over TMF from 1997 to 2001 is at least a factor of 2 larger than model calculations predict (≈5–10% difference from solar maximum to minimum) [Mills et al., 2002; Canty and Minschwaner, 2002].

[37] On intra-annual timescales, statistically significant deviations from the empirical mean OH column of up to +40% and −50% are observed and variability on at least week-to-week or monthly timescales is readily apparent, section 3. As is also discussed in section 3, the observed variations in OH column appear to occur “uniformly” throughout the day. Our attempts to model the observed intra-annual variations are the subject for the remainder of section 6.

6.3. OH Column Variations Inferred From Measurements of Precursors

[38] The model sensitivity analyses in section 5 suggest that the observed intra-annual variations in OH column abundance should be caused primarily by variations in the concentration of H\(_2\)O and to a lesser extent O\(_3\). The remainder of this section compares the OH column abundance variations observed over TMF with those expected on the basis of observed variations in the concentrations of H\(_2\)O and O\(_3\) near TMF and the weighting functions derived in section 5. These comparisons are limited by the quality of the OH, H\(_2\)O, and O\(_3\) measurements and by the degree to which these measurements are spatially and temporally coincident. The stratospheric ozone LIDAR at TMF can only measure O\(_3\) up to ∼50 km [Leblanc and McDermid, 2000]. The Naval Research Laboratory’s (NRL) Water Vapor Millimeter-wave Spectrometer (WVMS) at TMF can only provide H\(_2\)O concentrations above 45 km altitude [Nedoluha et al., 1995] and was not operating properly for at least 1998–2001. The Microwave Limb Sounder (MLS) aboard the Upper Atmosphere Research Satellite (UARS) [Barath et al., 1993] was operated very sporadically in 1997–2001 and one of its primary O\(_3\) measurement channels was not functioning. The Stratospheric Aerosol and Gas Experiment (SAGE) II does not provide H\(_2\)O or O\(_3\) concentrations above 50 km altitude [Zaun et al., 1983]. Consequently, the only data set we found that provided measurements of H\(_2\)O and O\(_3\) over the altitude range of at least 15–80 km for 1997–2001 was from the Halogen Occultation Experiment (HALOE) [Russell et al., 1993].

[39] HALOE measures species concentrations via sunrise and sunset occultations. We first selected all occultations that met our criteria (defined later) for spatial and temporal coincidence with the TMF OH column measurements. We then interpolated the measured HALOE (v. 19) concentrations onto a 2-km altitude grid from 12 to 80 km to match the grid used for the modeling. We divided the concentration at each altitude by the mean concentration measured at that altitude during the period July 1997 to December 2001. The measured vertical profiles of concentrations were thus converted into vertical profiles of the fractional deviation from the mean for each species. This was done separately for the sunrise and sunset occultations, but no significant differences in the temporal behavior of the sunrise and sunset data were evident. These fractional deviations from the mean are analogous to the normalized OH column abundances discussed in section 3 and are referred to hereafter as “normalized” species concentrations. The normalized species concentrations were multiplied by the altitude-dependent weighting functions (Figure 5) and summed as described by equation (23) to calculate the expected value for the normalized OH column on each day. The 2-σ uncertainties on the HALOE measurements of each species at each altitude were converted into 2-σ uncertainties on the normalized deviation from the mean using standard methods for propagating uncertainties [Bevington, 1969]. The 2-σ uncertainty on the calculated normalized OH column abundance for each species was then determined in the standard manner [Bevington, 1969] by multiplying the uncertainty at each altitude by the weighting function for that altitude and summing the weighted uncertainties over all altitudes.

[40] Figure 6 shows the separate contributions from the normalized variations in H\(_2\)O, O\(_3\), and “OverO\(_3\)” when summed over the 11–81 km altitude region. A clear annual cycle is evident in all three contributions to the calculated
but there is no corresponding clear signature of an annual cycle in the observed daily average OH column variations (Figure 3). It is also evident from Figure 6 that the contributions to the expected OH column variation from the normalized variations in O3 and “OverO3” are opposite in sign and approximately equal in magnitude on a column-integrated basis. Consequently, the contributions to the calculated OH column from O3 and “OverO3” should approximately cancel on a column-integrated basis and the calculated OH column variations should be dominated by the contribution from the normalized variations in H2O.

Figure 7 shows the calculated OH column variations using the noon weighting functions. Each of these calculations is the sum of the contributions due to variations in H2O, O3, and “OverO3” at 11–81 km. The 2-σ uncertainties shown in Figure 7 are the root-sum-square of the 2-σ uncertainties calculated for each of the three contributors (H2O, O3, and “OverO3”) [Bevington, 1969]. The temporal pattern is similar for each of the three OH profiles, but the amplitude of the calculated OH column variation is significantly larger for the profile that has the largest fraction of the OH column in the mesosphere. Variations in the OH column are expected to be particularly sensitive to variations in mesospheric H2O because the observed fractional variations in H2O are larger in the mesosphere than in the stratosphere, albeit with greater uncertainties in the HALOE measurements.

6.4. Statistical Comparisons of Measurements and Model Calculations

[42] Two approaches have been taken for comparing the calculated and measured normalized OH column abundances. The first is to compare the statistical characteristics of the calculated and measured abundances. Because the normalized OH column abundances represent deviations from the mean, the primary statistical property of interest is the standard deviation for the normalized OH column abundances. The measured daily average normalized P1(1) OH column abundance over TMF has a standard deviation of 0.12. The mean 2σ uncertainty on the measured daily average normalized OH column abundance is 0.05 so the observed variability is much larger than the measurement...
The calculated daily average normalized OH column abundance near TMF has a standard deviation of 0.05–0.09 using the noon sensitivity coefficients and 0.04–0.08 using the afternoon sensitivity coefficients. The greatest variability is found in calculations using the OH profile that has the largest fraction of the OH column in the mesosphere. The mean 2σ uncertainty on the calculated daily average normalized OH column abundance is 0.03–0.04 for both the noon and afternoon sensitivity coefficients, neglecting the uncertainties in the weighting functions. Consequently, for all three OH profiles and for both times of day, the variability in the calculated normalized OH column abundances is smaller than what is observed. The uncertainties on the measured and calculated daily average normalized OH column abundances are sufficiently small that the uncertainties cannot account for this difference between calculations and observations. Thus the greater variability in the observations is statistically significant.

Three possible conclusions can be drawn from the difference between the standard deviations for the measured and calculated normalized OH column abundances. First, the fraction of the OH column in the mesosphere might be even larger than was assumed in the present study. This would contradict the results from the Middle Atmosphere High Resolution Spectrograph Investigation (MAHRSI) [Conway et al., 2000] and would disagree with the conclusions reached in other studies [Sandor and Clancy, 1998]. Second, the sensitivity coefficients for H₂O derived from the analytic model may be a factor of 2 smaller than is true for the atmosphere. A study of interannual and seasonal variations of the OH column observed over Fritz Peak Observatory used different modeling and analysis methods,
but it also suggested that the sensitivity coefficient for H$_2$O should be a factor of 2 larger than predicted by present photochemical models [Canty and Minschwaner, 2002].

[43] Third, the observed variations in the OH column over TMF may be dominated by factors that have not been considered in the present study. One possibility is the tropospheric component of the OH column. Measurements of OH in the boundary layer have found variations in OH concentrations that could produce an \sim10% change in the OH column if the variations in OH concentration that have been observed in the boundary layer are representative of the entire troposphere [Mount et al., 1997; Canty et al., 2000]. At present there are too few measurements of OH in the free troposphere, particularly downwind of large urban centers like Los Angeles, to corroborate or refute this hypothesis.

6.5. Comparisons of Near-Coincident Measurements and Model Calculations

[45] Our second approach for comparing the calculated and measured normalized OH column abundances has been to select coincident or near-coincident days. Initially, we attempted to compare the measured and calculated normalized OH column abundances for days on which HALOE measurements above TMF were coincident with OH column measurements over TMF. However, both data sets are sufficiently sparse that there are only 6 days from July 1997 to December 2001 with temporally and spatially coincident measurements (i.e., on the same day within 5° latitude and 10° longitude of TMF). Relaxing the temporal coincidence criterion to ±1 day produces 20 near-coincident days (Figure 8) that are grouped into 13 clusters. Relaxing the temporal coincidence to ±1 day and the spatial coincidence to ±10° latitude and any longitude produces 75 near-coincident days, but these near-coincident days are grouped into 26 clusters (with a typical interval between clusters of 1–2.5 months for the time periods where TMF data were collected regularly) and the averaged calculations may no longer be representative of the conditions at the time and location of the OH column measurements.

[46] Although some correlation between the calculated and measured normalized daily average OH column abundances is evident in Figure 8, the degree of correlation is much less than expected on the basis of the sensitivity analyses in section 5. However, the number of near-coincidences is too small to justify a definitive conclusion, particularly given the small number of near-coincidences in the months of February to October. No single weighting function (based on the three OH profiles and sensitivity coefficients from two times of day shown in Figure 5) produced a significantly better correlation between the calculated and measured normalized daily average OH column abundances than is shown in Figure 8. Time-dependent calculations using the full Caltech/JPL photochemical model for the near-coincident days would be required to assess whether the OH profile on each of the near-coincident days changes by the amount that would be required to bring a majority of the calculated OH column abundances into agreement with the measured OH column abundances. However, simulations using multiple weighting functions from Figure 5 cannot eliminate the apparent disagreement between measurements and calculations in

Figure 8. Calculated and measured normalized OH column abundances. The measured normalized OH column abundances are averages over 3 days. The interannual linear trend (Figure 3) has been subtracted from the measured normalized OH column abundances. The calculated normalized OH column abundances are averages over 1 day inferred from HALOE observations of H$_2$O and O$_3$ within 5° latitude and 10° longitude of TMF using the noontime sensitivity coefficients and the nominal OH profile derived from the 1997 MAHRSI measurements [Conway et al., 2000]. The black squares mark data from 5 December 1997 and 27 January 1998. The green triangles mark data from 10 and 11 July 1998. The green squares mark data from 11–13 November 1998 and 21–23 January 1999. The red diamonds marks the datum from 9 March 1999. The red triangle marks the datum from 15 June 1999. The blue diamonds marks the datum from 2 March 2000. The blue triangles mark data from 9 and 29 June 2000. The blue squares mark data from 10–12 December 2000. The purple diamonds marks the datum from 13 April 2001. The purple “X” marks the datum from 14 August 2001. The short-dashed line indicates what would be expected if the measurements and calculations agreed perfectly.

Figure 8. These weighting functions cover a broad range of atmospheric conditions, so we believe changes in the weighting function cannot resolve the apparent disagreement between measurements and calculations.

[47] The statistical comparisons in section 6.4 suggested that the actual sensitivity coefficient for variations in the concentration of H$_2$O (S_j(H$_2$O)) may be a factor of 2 larger than was calculated from the analytic model. This was tested by doubling S_j(H$_2$O) at 61–81, 51–81, and 11–81 km altitude. Doubling S_j(H$_2$O) increases the variability (one standard deviation) in the calculated normalized OH column abundance from 0.05 (using S_j(H$_2$O) from the analytic model) to 0.08 (when doubling the sensitivity for 61–81 km), 0.08 (when doubling for 51–81 km), and 0.10 (when doubling for 11–81 km). When S_j(H$_2$O) is doubled at
The variability in the calculated normalized OH column abundance becomes comparable to the 0.12 variability that is observed over TMF. As shown in Figure 9, however, the degree of correlation between the calculated and measured normalized OH columns does not change significantly. No single weighting function from Figure 5 produced a significantly better correlation between the calculated and measured normalized daily average OH column abundances than is shown in Figure 9. The result shown in Figure 9 plus the negative result from using multiple OH profiles for simulations (above) suggests that doubling the sensitivity coefficient for variations in H₂O will not be sufficient for resolving the differences that exist between observations and calculations. If the estimated uncertainties for the TMF measurements [Cageao et al., 2001] are correct, then other factors that have not been examined in this manuscript must exert significant influence on the OH column abundance.

7. Summary and Conclusions

[48] Measurements of the OH column abundance over the Jet Propulsion Laboratory’s Table Mountain Facility (TMF) have been made since July 1997 at 10°–80° solar zenith angle using a Fourier transform ultraviolet spectrometer (FTUVS). An empirical least squares fit describing the annual average OH column as a function of solar zenith angle has been derived. The measured OH column at any solar zenith angle is typically larger in the afternoon than in the morning. The variations observed in the normalized OH column abundance appear to be the result of changes in atmospheric conditions that occur on a daily or longer timescales. The magnitude of the variations observed in the daily average of the normalized OH column abundance is larger than the uncertainties on the daily averages, implying the observed variations are statistically significant.

[49] An updated analytic model that describes the OH concentration at 25–70 km altitude was derived and used to calculate sensitivity coefficients that describe how the OH concentration and the OH column abundance are expected to change in response to changes in the concentrations of H₂O, O₃, NO, CO, and CH₄. On the basis of the modeled sensitivity coefficients and HALOE observations of O₃ concentrations, the net sensitivity of the OH column abundance to variations in O₃ concentrations is close to zero because the radiative (overhead optical depth) and local photolytic effects approximately cancel when integrated over the entire column. Consequently, variations in the OH column abundance are expected to be dominated by variations in H₂O concentrations.

[50] The observed OH column over TMF increased by about 25% from July 1997 to December 2001. No significant interannual trend is apparent in the modeled OH column for this time period so the observed trend in the OH column abundance is not due to the observed interannual trends in H₂O or O₃ concentrations. The observed interannual OH column trend is at least a factor of 2 larger than the calculated difference between solar minimum and maximum. On a daily average basis, the observed variations in the normalized OH column abundance are a factor of 2 larger than calculated on the basis of HALOE observations of H₂O and O₃. This suggests that the sensitivity of OH concentrations to variations in H₂O concentrations is a factor of 2 larger than predicted in present models. However, doubling the sensitivity of OH concentrations to variations in H₂O does not, by itself, resolve the relatively poor correlation between calculated and measured normalized OH column abundances for the small number of days on which near-coincident measurements were made of OH column and H₂O and O₃ concentration profiles. These results suggest that there is some other major driver for
the observed variability in the OH column abundance that was not examined in the present study. One possibility is the troposphere. Substantial variations have been reported for OH concentrations in the boundary layer between “clean” and “urban” air, but no similar time series of measurements exists for the free troposphere.

The present analysis is limited by the small number of coincident measurements of OH column abundance, H₂O, O₃, and temperature are needed.

Whether the upward trend in OH column abundance seen between data sets. Ideally, coincident observations of OH column abundance and OH profile measurements and intercomparisons of OH column abundances from different instruments. These intercomparisons will help resolve existing questions regarding the systematic differences between data sets. Ideally, coincident observations of OH column abundance along with vertical profiles of OH, H₂O, O₃, H₂O, and O₃ altitude over at least 30–70 km altitude are needed. This might be possible if coincident observations by Odin [Murtagh et al., 2002], SABER http://asad-www.nrl.navy.mil/saber/ASDSaber.html, and SHIMMER http://uap-www.nrl.navy.mil/shimmer/shimmer.htm) can be arranged. Regular OH concentration measurements in the free troposphere, particularly downwind of large urban areas like Los Angeles, are needed to assess what fraction of the observed variability in the OH column is due to fluctuations in the OH concentration in the free troposphere.

8. Future Work

Several types of additional measurements are required to examine questions raised in the present research. Further OH column measurements are needed to assess whether the upward trend in OH column abundance seen from 1997 to 2001 is cyclical. Two types of data intercomparisons are needed [Mills et al., 2002]: (1) coincident OH column abundance and OH profile measurements and (2) intercomparisons of OH column abundances from different instruments. These intercomparisons will help resolve existing questions regarding the systematic differences between data sets. Ideally, coincident observations of OH column abundance along with vertical profiles of OH, H₂O, O₃, H₂O, and O₃ altitude over at least 30–70 km altitude are needed. This might be possible if coincident observations by Odin [Murtagh et al., 2002], SABER http://asad-www.nrl.navy.mil/saber/ASDSaber.html, and SHIMMER http://uap-www.nrl.navy.mil/shimmer/shimmer.htm) can be arranged. Regular OH concentration measurements in the free troposphere, particularly downwind of large urban areas like Los Angeles, are needed to assess what fraction of the observed variability in the OH column is due to fluctuations in the OH concentration in the free troposphere.

8. Future Work

[53] Several types of additional measurements are required to examine questions raised in the present research. Further OH column measurements are needed to assess whether the upward trend in OH column abundance seen from 1997 to 2001 is cyclical. Two types of data intercomparisons are needed [Mills et al., 2002]: (1) coincident OH column abundance and OH profile measurements and (2) intercomparisons of OH column abundances from different instruments. These intercomparisons will help resolve existing questions regarding the systematic differences between data sets. Ideally, coincident observations of OH column abundance along with vertical profiles of OH, H₂O, O₃, H₂O, and O₃ altitude over at least 30–70 km altitude are needed. This might be possible if coincident observations by Odin [Murtagh et al., 2002], SABER http://asad-www.nrl.navy.mil/saber/ASDSaber.html, and SHIMMER http://uap-www.nrl.navy.mil/shimmer/shimmer.htm) can be arranged. Regular OH concentration measurements in the free troposphere, particularly downwind of large urban areas like Los Angeles, are needed to assess what fraction of the observed variability in the OH column is due to fluctuations in the OH concentration in the free troposphere.

8. Future Work

Several types of additional measurements are required to examine questions raised in the present research. Further OH column measurements are needed to assess whether the upward trend in OH column abundance seen from 1997 to 2001 is cyclical. Two types of data intercomparisons are needed [Mills et al., 2002]: (1) coincident OH column abundance and OH profile measurements and (2) intercomparisons of OH column abundances from different instruments. These intercomparisons will help resolve existing questions regarding the systematic differences between data sets. Ideally, coincident observations of OH column abundance along with vertical profiles of OH, H₂O, O₃, H₂O, and O₃ altitude over at least 30–70 km altitude are needed. This might be possible if coincident observations by Odin [Murtagh et al., 2002], SABER http://asad-www.nrl.navy.mil/saber/ASDSaber.html, and SHIMMER http://uap-www.nrl.navy.mil/shimmer/shimmer.htm) can be arranged. Regular OH concentration measurements in the free troposphere, particularly downwind of large urban areas like Los Angeles, are needed to assess what fraction of the observed variability in the OH column is due to fluctuations in the OH concentration in the free troposphere.

8. Future Work

Several types of additional measurements are required to examine questions raised in the present research. Further OH column measurements are needed to assess whether the upward trend in OH column abundance seen from 1997 to 2001 is cyclical. Two types of data intercomparisons are needed [Mills et al., 2002]: (1) coincident OH column abundance and OH profile measurements and (2) intercomparisons of OH column abundances from different instruments. These intercomparisons will help resolve existing questions regarding the systematic differences between data sets. Ideally, coincident observations of OH column abundance along with vertical profiles of OH, H₂O, O₃, H₂O, and O₃ altitude over at least 30–70 km altitude are needed. This might be possible if coincident observations by Odin [Murtagh et al., 2002], SABER http://asad-www.nrl.navy.mil/saber/ASDSaber.html, and SHIMMER http://uap-www.nrl.navy.mil/shimmer/shimmer.htm) can be arranged. Regular OH concentration measurements in the free troposphere, particularly downwind of large urban areas like Los Angeles, are needed to assess what fraction of the observed variability in the OH column is due to fluctuations in the OH concentration in the free troposphere.

8. Future Work

Several types of additional measurements are required to examine questions raised in the present research. Further OH column measurements are needed to assess whether the upward trend in OH column abundance seen from 1997 to 2001 is cyclical. Two types of data intercomparisons are needed [Mills et al., 2002]: (1) coincident OH column abundance and OH profile measurements and (2) intercomparisons of OH column abundances from different instruments. These intercomparisons will help resolve existing questions regarding the systematic differences between data sets. Ideally, coincident observations of OH column abundance along with vertical profiles of OH, H₂O, O₃, H₂O, and O₃ altitude over at least 30–70 km altitude are needed. This might be possible if coincident observations by Odin [Murtagh et al., 2002], SABER http://asad-www.nrl.navy.mil/saber/ASDSaber.html, and SHIMMER http://uap-www.nrl.navy.mil/shimmer/shimmer.htm) can be arranged. Regular OH concentration measurements in the free troposphere, particularly downwind of large urban areas like Los Angeles, are needed to assess what fraction of the observed variability in the OH column is due to fluctuations in the OH concentration in the free troposphere.

M. Allen, Jet Propulsion Laboratory, California Institute of Technology, MS 183-401, 4800 Oak Grove Drive, Pasadena, CA 91109, USA.

R. P. Cageao and S. P. Sander, Jet Propulsion Laboratory, California Institute of Technology, MS 183-901, 4800 Oak Grove Drive, Pasadena, CA 91109, USA.

F. P. Mills, Research School of Physical Sciences and Engineering, Australian National University, Canberra ACT 0200, Australia. (frank.mills@anu.edu.au)

E. E. Remsberg, NASA Langley Research Center, MS 401B, 21 Langley Boulevard, Hampton, VA 23681, USA.

U. Richter, California Institute of Technology, M/C 138-78, 1201 E. California Boulevard, Pasadena, CA 91125, USA.

J. M. Russell III, Center for Atmospheric Sciences, Hampton University, P. O. Box 6075, Hampton, VA 23668, USA.

Y. L. Yung, California Institute of Technology, M/C 150-21, 1201 E. California Boulevard, Pasadena, CA 91125, USA.