Benzene and Haze Formation in the Polar Atmosphere of Jupiter

Ah-San Wong
Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan, USA

Yuk L. Yung
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA

A. James Friedson
Earth and Space Sciences Division, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA

Received 24 November 2002; revised 17 March 2003; accepted 24 March 2003; published 30 April 2003.

1. Benzene Observations

[2] Benzene was first detected on Jupiter in 1985 by the Voyager Infrared Interferometer Spectrometer (IRIS) experiment in the northern auroral region near 60°N and 180°W [Kim et al., 1985]. Observations with the Short-Wavelength Spectrometer (SWS) of the Infrared Space Observatory (ISO) indicate the presence of benzene at all latitudes, with significantly enhanced emission in the auroral spots relative to the surrounding regions [Flasar, 2002].

2. Model Description and Results

[3] In the polar regions, since there is insufficient UV flux to produce the observed amount of benzene, energy from the auroras might be necessary. To investigate the effects of the auroras on benzene and aerosol production in polar regions, a new Caltech/JPL one-dimensional chemical model of hydrocarbons for Jupiter is presented here, with updated neutral and ion kinetics and aerosol modeling [Gladstone et al., 1996; Moses et al., 2000; Lee et al., 2000; Wong et al., 2000; Friedson et al., 2002]. The calculations are made for 60° latitude. Chemical species calculated include linear and/or cyclic hydrocarbon neutral molecules and ions up to six carbon atoms (including the ring compound benzene A1 and its radical A1−), the two-ring compound naphthalene (A2) and its radicals, one- and two-ring compounds with one or two hydrogen atoms replaced by C2H2 group, and polycyclic aromatic hydrocarbons (PAHs) larger than A2 lumped together as one species. Long chain hydrocarbons will be addressed in a separate study. The complete list of reactions and rate coefficients is tabulated in Appendix B.1.4 of Wong’s thesis [Wong, 2002]. A sample of important reactions is listed in Table 1, and the reaction pathways are illustrated in Figure 1.

2.1. Auroral Atmosphere

[4] In our model, the temperature profiles and auroral ion production rates are taken from the self-consistent Jovian auroral thermal model of Grodent et al. [2000] to simulate the diffuse and discrete auroras. In the cool diffuse aurora, the energy flux is 30.5 ergs cm−2 s−1 whereas in the warm discrete aurora it is 110.5 ergs cm−2 s−1. The eddy diffusivity profile, K(z), in the auroral regions of Jupiter is not known; however, due to the intense energy input, eddy mixing is expected to be much more effective. For example, on Earth, K(z) in the polar regions is 10–30 times greater than that in the lower latitudes [Banks and Krochats, 1973]. By analogy, we surmise that in Jupiter’s auroral regions, at the altitudes of electron deposition, K(z) would be at least 15 times greater than that derived by Atreya et al. [1981] for the equatorial regions. In our model, we adopt the expression $K(z) = (1.46 \times 10^6 \times 15) \times (1.4 \times 10^{13}/n(z))^{0.65} \text{cm}^2 \text{s}^{-1}$.
two pathways from the evaluation by electron-impact reactions which ionize H₂, H, and He; the al. 1999; widely accepted processes, the two most important path-
ing the dominant reactions responsible for the first aromatic model includes 79 electron-ion recombination reactions. The ions react with and transfer charges to neutral latitude. The ions react with and transfer charges to neutral impact ionization and are found to be negligible at this reactions are included for comparison with the electron-
production rates are taken from 2) C₂H₂ addition to n-C₄H₃ (HCCCHCH) or n-C₄H₅ (CH₂CHCHCH). We adopt the rate coefficients for these above 100 mbar, and K(z) = 10^3 cm² s⁻¹ below 100 mbar, where nᵢ(z) is the total number density as a function of altitude z.

2.2. Photochemistry and Ion Chemistry

For neutral chemistry, there is little consensus regarding the dominant reactions responsible for the first aromatic ring formation [see, e.g., Lindstedt, 1998]. Among the more widely accepted processes, the two most important pathways are 1) the combination of propargyl radicals C₃H₃, and 2) C₂H₃ addition to n-C₆H₅ (HCCCHCH) or n-C₆H₅ (CH₂CHCHCH). We adopt the rate coefficients for these two pathways from the evaluation by D’Anna et al. [2001].

For ion chemistry, we select relevant ion reactions from over 4000 reactions in the literature [Perry et al., 1999; Anicich and McEwan, 1997; Keller et al., 1998; Kim and Fox, 1994; Le Teuff and Markwich, 2000; McEwan et al., 1999; Millar et al., 1997; Scott et al., 1997; Vincikier et al., 1962]. Ion chemistry starts with the most important electron-impact reactions which ionize H₂, H, and He; the production rates are taken from Grodent et al. [2000] for both diffuse and discrete aurora cases. Eight photoionization reactions are included for comparison with the electron-impact ionization and are found to be negligible at this latitude. The ions react with and transfer charges to neutral species through ion-neutral exchange reactions, and 288 exchange reactions are included in the calculation. The ions also recombine with electrons to form neutral species. Our model includes 79 electron-ion recombination reactions.

Several outstanding uncertainties exist in selecting ion reactions for the model. First, for most reactions that form C₆H₅⁺ or C₅H₆⁺ it is not known whether the products are in cyclic form or not; because most of the experimental data are based on mass spectrometry. We assume the cyclic forms for these species because ring closure will occur when radiative stabilization dominates [McEwan et al., 1999]. Second, the rate coefficients and/or branching ratios of some ion reactions are unavailable. For these reactions, we estimate the total rate coefficient to be 10⁻⁹ cm³ s⁻¹, and assume equal branching ratios for all branches when applicable. Three-body reaction rate coefficients are not available for most ion-neutral exchange reactions, and we assign an estimated rate coefficient of 1.0 × 10⁻²⁷ cm⁶ s⁻¹. Finally, for those electron-ion recombination reactions with unavailable product and rate information, we estimate a removal rate coefficient of 7.5 × 10⁻⁹ cm³ s⁻¹ [Perry et al., 1999; Rebrion-Rowe et al., 1998], and we use C₆H₆ to represent the sum of species formed from the electron recombination of an ion which has a total of i carbon atoms. These C₆H₆ molecules are removed in the model only by eddy diffusion. Hydrocarbon molecules larger than benzene do not react with ions in the model.

2.3. Chemical Model Results

For a diffuse aurora with 30.5 ergs cm⁻² s⁻¹ input energy flux; the calculated column abundance of benzene above the 50-mbar pressure level is 4.3 × 10¹⁵ molecules cm⁻², the mixing ratio at 10⁻³ mbar is 2.6 × 10⁻⁸, and the total production rate is 2.5 × 10⁸ molecules cm⁻² s⁻¹. The calculated volume mixing ratios of the relevant species are shown in Figure 2a. For a discrete aurora with 110.5 ergs cm⁻² s⁻¹ input energy flux for a period of 10⁶ seconds, the corresponding values for abundance, mixing ratio and production rate of benzene are 7.5 × 10¹⁵ molecules cm⁻², 8.6 × 10⁻⁸, and 9.4 × 10⁸ molecules cm⁻² s⁻¹, respectively. As expected, the more intense discrete aura produces greater amount of benzene.

Table 1. Selected Reactions and Rate Coefficients for Jupiter Aural Model

<table>
<thead>
<tr>
<th>No.</th>
<th>Reaction</th>
<th>Rate Coefficient¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>R104</td>
<td>C₃H₂ + H + M → C₂H₃ + M</td>
<td>k₀ = 2.52 × 10⁻²⁸</td>
</tr>
<tr>
<td>R123</td>
<td>C₂H₆ + H + M → C₂H₅ + M</td>
<td>k₀ = 5.0 × 10⁻¹¹</td>
</tr>
<tr>
<td>R200</td>
<td>C₂H₆ + C₂H₅ + M → C₃H₆ + M</td>
<td>k₀ = 1.0 × 10⁻⁰⁸</td>
</tr>
<tr>
<td>R203</td>
<td>C₂H₆ + H₂ → C₂H₅ + H</td>
<td>k₀ = 6.0 × 10⁻⁰⁸</td>
</tr>
<tr>
<td>R233</td>
<td>C₂H₅ + C₂H₃ → A₁ + H</td>
<td>1.2 × 10⁻¹¹</td>
</tr>
<tr>
<td>R234</td>
<td>C₂H₃ + C₂H₃ + M → A₁ + M</td>
<td>4.98 × 10⁻¹²</td>
</tr>
<tr>
<td>R242</td>
<td>C₂H₆ + C₂H₅ + M → A₁ + M</td>
<td>4.65 × 10⁻¹⁰</td>
</tr>
<tr>
<td>R244</td>
<td>C₂H₆ + C₂H₅ → A₁ + H</td>
<td>1.66 × 10⁻⁰⁹</td>
</tr>
<tr>
<td>R255</td>
<td>C₂H₆ + H + M → A₁ + M</td>
<td>1.44 × 10⁻⁰⁹</td>
</tr>
<tr>
<td>R260</td>
<td>C₂H₆ + H → A₁ + H</td>
<td>2.16 × 10⁻¹⁰</td>
</tr>
<tr>
<td>R484</td>
<td>C₂H₃ + C₂H₂ → C₂H₄ + H₂</td>
<td>3.8 × 10⁻¹⁰</td>
</tr>
<tr>
<td>R546</td>
<td>C₂H₅ + C → C₂H₄ + H₂</td>
<td>3.8 × 10⁻¹⁰</td>
</tr>
<tr>
<td>R547</td>
<td>C₃H₄ + C₂H₂ → C₂H₄ + H₂</td>
<td>2.2 × 10⁻¹⁰</td>
</tr>
<tr>
<td>R589</td>
<td>c-C₆H₅ + H₁ → c-C₆H₅⁺</td>
<td>6.0 × 10⁻¹¹</td>
</tr>
<tr>
<td>R640</td>
<td>C₂H₅ + e⁻ → C₂H₄ + H</td>
<td>2.6 × 10⁻⁰⁶</td>
</tr>
<tr>
<td>R646</td>
<td>C₂H₆ + e⁻ → C₂H₅ + H</td>
<td>5.37 × 10⁻⁰⁶</td>
</tr>
<tr>
<td>R667</td>
<td>c-C₆H₅⁺ + e⁻ → A₁ + H</td>
<td>8.66 × 10⁻⁰⁶</td>
</tr>
</tbody>
</table>

The full reaction list and the references are available from the authors²².

¹Units for two-body (k₀) and three-body (k₀) rate coefficients are cm³ s⁻¹ and cm⁶ s⁻¹, respectively.

Figure 1. Important reaction pathways of benzene and polycyclic aromatic hydrocarbons formation. A₁ is benzene, A₂ is naphthalene, A₁⁻ and A₂⁻ are one and two ring radicals, A₃C₆H₂ is benzene with a hydrogen atom replaced by a C₆H₂ group, and PAHs represents all ring compounds larger than A₂.
is identified in studies of benzene formation in Titan’s atmosphere [Wilson et al., 2003].

[10] Our model also shows an increase of hydrocarbon abundance with increasing auroral activity. For example, the column abundance of ethylene above 50-mbar is 6.7×10^{15} cm$^{-2}$ in the diffuse aurora, and is 1.8×10^{16} cm$^{-2}$ in the discrete aurora. The increase in acetylene and ethane is less significant. For comparison, the Cassini CIRS preliminary observational results show enhanced emission from acetylene and ethylene in auroral regions, with less enhancement from ethane [Flasar, 2002]. However, the enhancement in abundance of these species relative to the surrounding non-auroral regions is unknown, because the auroral vertical temperature profile is still uncertain [Flasar, personal communication].

2.4. Aerosol Model

[11] Ion chemistry and benzene production lead to the formation of complex hydrocarbons and PAHs, which condense to form aerosols (Figure 2b). Coupling the chemical model with the aerosol microphysical model of Friedson et al. [2002], we find that, in the diffuse aurora case, the total volume of aerosol produced per unit area is 5.5×10^{-6} cm$^{-2}$. For comparison, the total aerosol volume deduced from the data of Tomasko et al. [1986] (observation at 40°N) and Rages et al. [1999] (observation at 60°N) is around $2 \times 10^{-5} - 3 \times 10^{-5}$ cm$^{-2}$. Mean particle radii are in the range of ~0.09–1.1 µm, with the larger particles residing at lower altitudes. The altitude of the haze top and the mean particle sizes predicted by our model are consistent with the observations, while the total aerosol loading is about a factor of four lower than the observational estimates but probably lies within the range of uncertainty associated with these estimate. Previous models neglecting ion chemistry predict too little aerosol by a factor of 100 [Friedson et al., 2002]. With the inclusion of detailed ion chemistry, the dominant path for benzene production in the polar regions, the current model predicts enough aerosol to match the observations.

3. Conclusion

[12] Our new chemical and aerosol model for the auroral atmosphere of Jupiter predicts the amounts of benzene and aerosol that are consistent with observations. The chemical and aerosol formation processes outlined in this paper are probably applicable to Saturn’s atmosphere, although the lower magnetospheric energy input on Saturn might affect the chemical rates at which condensable species will form. Our results also suggest that extrasolar giant planets orbiting close to their primary, where they receive high doses of far-UV irradiation, may be blanketed with a similar organic haze. However, great uncertainties remain in our current understanding and therefore laboratory and planetary measurements of the following would permit a more accurate quantification of the polar benzene and haze production: 1) the reaction kinetics of the ring production process, especially in ion-related reaction rate coefficients and products, 2) the energy spectrum and total energy flux of energetic electrons in Jovian auroras, 3) the chemical, physical and optical properties of polar aerosols, and 4) $K(z)$ at the auroral latitudes.
References

Flasar, F. M., CIRS observations of Jupiter, COSPAR abstract, 2002.

