DETERMINATION OF $O_2(a^3\Pi_g)$ and $O_2(b^3\Sigma^+)$ YIELDS IN THE REACTION $O + ClO + Cl + O_2$:
IMPLICATIONS FOR PHOTOCHEMISTRY IN THE ATMOSPHERE OF VENUS

Ming-Taun Leu and Yuk L. Yung

Earth and Space Sciences Division and Division of Geological and Planetary Sciences,
California Institute of Technology Pasadena, CA 91109 and 91125

Abstract. A discharge flow apparatus with chemiluminescence detector has been used to study the reaction $O + ClO + Cl + O_2$, where $O_2(a^3\Pi_g)$ or $O_2(b^3\Sigma^+)$. The measured quantum yields for producing $O_2(a^3\Pi_g)$ and $O_2(b^3\Sigma^+)$ in the above reaction are less than 2.5 x 10^{-5} and equal to (4.4 ± 1.1) x 10^{-5}, respectively. The observed $O_2(a^3\Pi_g)$ airglow of Venus cannot be explained in the context of standard photochemistry using our experimental results and those reported in recent literature. The possibility of an alternative source of O atoms derived from SO2 photolysis in the mesosphere of Venus is suggested.

Introduction

The intense $O_2(a^3\Pi_g)$ emission of Venus at 1.27 μm was discovered by Connes et al. (1979), who estimated the dayglow and nightglow brightness to be 1.5 and 1.2 MR (1 Megarayleigh = 1 x 10^{12} photons cm^{-2} s^{-1}), respectively. The authors also proposed that the most likely processes for producing $O_2(a^3\Pi_g)$ on Venus are:

1. $O + O + CO \rightarrow O_2 + CO_2 + 498$ KJ/mol
2. $Cl + O_3 \rightarrow ClO + O_2 + 161$ KJ/mol
3. $O + ClO \rightarrow Cl + O_2 + 236$ KJ/mol

Detailed modeling by Yung and DeMore (1982) and Krasnopolsky and Parashis (1983) showed that, in order to explain the Venus observations, the quantum yields in reactions (1)-(3) must be close to unity.

Reaction (1) has been studied by a number of workers (see recent review by Wayne, 1985). The quantum yields for singlet oxygen (both a and b states), as summarized in Table 3, are low. Reaction (2) was studied by Choo and Leu (1985b), who found no evidence for the production of excited O_2 (see Table 3). The authors also proposed that the most likely processes for producing $O_2(a^3\Pi_g)$ on Venus are:

$O + O + CO_2 \rightarrow O_2 + CO_2 + 498$ KJ/mol

$Cl + O_3 \rightarrow ClO + O_2 + 161$ KJ/mol

$O + ClO \rightarrow Cl + O_2 + 236$ KJ/mol

The ClO radicals were generated as follows: First, Cl atoms in the concentration range (5-10) x 10^{23} cm^{-3} were produced by passing a small amount of Cl_2 in a helium carrier through a microwave discharge tube. Then, Cl atoms, in slight excess, were allowed to react with ClO in a fast reaction leading to the production of ClO (DeMore et al., 1985)

$k_5 = 9.8 \times 10^{-11}$ cm^{3} s^{-1}. (5)

The ClO molecules used in this work were prepared as described in Leu (1984). The absolute concentration of ClO was monitored by an optical absorption technique. The light source was a low pressure mercury lamp, which emits a strong line at 253.7 nm, and the adopted cross section for ClO at this wavelength is 2.01×10^{16} cm^{2} (Lin, 1976; Molina and Molina, 1978). The detector was a photomultiplier equipped with an interference filter. By virtue of the stoichiometry of reaction (5), the initial concentration of ClO must equal the initial concentration of ClO. Having prepared the ClO molecules in this manner, they were then introduced into the reaction cell via a movable Pyrex injector.

The observation of the singlet oxygen emissions was carried out using the chemiluminescence detection system. Radiation in the wavelength range 600-900 nm was resolved with a 1/4 m McPherson monochromator (Model 275) and registered by a Hamamatsu cooled photomultiplier tube (Model R943-02) in conjunction with a Keithley picoammeter (Model 480). Radiation in the wavelength 900-1700 nm was resolved with an Oriel grating monochromator (Model 7240) and detected with a liquid nitrogen cooled germanium detector (Applied Detector Corp. Model 403L). The signals were modulated with a 100 Hz chopper (Balva) and a lock-in amplifier (EG & G Model 5804) was used for the phase sensitive detection.
The results of our analysis can be summarized as: $k_a < 9 \times 10^{-13} \text{ cm}^3 \text{s}^{-1}$, and $k_b = (1.6 \pm 0.4) \times 10^{-14} \text{ cm}^3 \text{s}^{-1}$ for the absolute rate constants for (3) to produce $O_2(a^3\Pi_g)$ and $O_2(b^3\Sigma_g^+)$, respectively. The uncertainty represents one standard deviation error.

Fig. 1. Chemiluminescence spectra taken from the reaction of atomic oxygen with ClO radical (see text for detail). The $O_2(b)$ emission at 7620 Å is clearly present. The $O_2(a)$ emission at 12700 Å is absent.

Emissions from both singlet oxygen states were simultaneously recorded on a two-channel recorder. The calibration of these emissions was discussed previously (Choo and Leu, 1985b) and will not be repeated here.

Figure 1 shows the chemiluminescence data taken under the following conditions: $[O] = [ClO] = 1.7 \times 10^{13} \text{ cm}^{-3}$ ([X] denotes the concentration of species X); total pressure = 1.25 Torr; flow velocity = 3620 cm s$^{-1}$; and reaction time = 4.8 ms. $O_2(b^3\Sigma_g^+)$ emission at 762 nm with a bandwidth of 10 nm was clearly detected. This result suggests that there were $3.8 \times 10^{13} \text{ cm}^{-3}$ of O in the $b^3\Sigma_g^+$ state, produced by reaction (3). $O_2(a^3\Pi_g)$ emission at 12700 nm was not detectable in the same experiment. $O_2(a^3\Pi_g)$ concentration was estimated to be less than $2 \times 10^{11} \text{ cm}^{-3}$. The experimental data are summarized in Table 1. In order to derive the quantum yields of $O_2(a^3\Pi_g)$ and $O_2(b^3\Sigma_g^+)$, a computer simulation was employed. The set of relevant chemical reactions is listed in Table 2. The rate of loss of $O_2(b^3\Sigma_g^+)$ on the walls of the reaction cell and quenching by N_2 has been measured using the same technique as reported here. The rates of loss of $O_2(a^3\Pi_g)$ by quenching on the walls and by collisions with N_2, Cl, O, and ClO are very small (Wayne, 1985) and can be neglected in the computer simulation. The experimental conditions have been chosen so as to minimize interference from the reactions (1) and Cl + ClO + Cl + O_2 (Choo and Leu, 1985b).

The quantum yields for producing $O_2(a^3\Pi_g)$ and $O_2(b^3\Sigma_g^+)$ for reaction (3) are summarized in Table 3, which also includes results for other simple reactions capable of producing the singlet oxygen states. In general, the quantum yields are very small, ranging from less than 10^{-5} to 4×10^{-3}.

According to Yung and DeMore (1982), the $O_2(a^3\Pi_g)$ emissions due to (1), (2), and (3) could be as high as 0.72, 0.37, and 0.72 MR, respectively, adding up to a total of 1.8 MR, if the quantum yields for forming $O_2(a^3\Pi_g)$ in the reactions were unity. However, using the current values for quantum yields, we obtain revised estimates of $O_2(a^3\Pi_g)$ emission (including cascading from $O_2(b^3\Sigma_g^+)$) to be 0.029, 0.007, and 0.014 MR, respectively. The total amounts to 0.05 MR, considerably less than the observed 1.2-1.5 MR.

We now face a fundamental dilemma. Reaction (1) turns oxygen atoms into O. Reactions (2) and (3) constitute a catalytic cycle for converting odd oxygen into O_2. The ultimate source of O atoms in the upper atmosphere of Venus in the present model is CO_2 photolysis, which proceeds at a mean rate of $8 \times 10^{12} \text{ cm}^{-2} \text{s}^{-1}$. This implies that the total rate of $O-O$ bond formation cannot exceed $4 \times 10^{12} \text{ cm}^{-2} \text{s}^{-1}$. Therefore, if the quantum yield for producing the $a^3\Pi_g$ state is q in each $O-O$ bond forming reaction, the airglow would be less than $4q$ MR. The recent laboratory results suggest that q is a few percent or less. Hence, the $O_2(a^3\Pi_g)$ emission of Venus cannot arise from $O-O$ bond forming reactions in which the O atoms are derived from CO_2 dissociation. The simplicity of the argument outlined here suggests that our conclusion is largely independent of the details of the photochemical model.

One obvious possibility is that there might...
Table II. Chemical scheme for computer simulation of the production of $O_2(a^1Ag)$ and $O_2(b^1Y^+g)$ in the reaction $O + ClO \rightarrow Cl + O_2$

<table>
<thead>
<tr>
<th>Reactions</th>
<th>Rate Constant (cm3 s$^{-1}$)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O + ClO \rightarrow Cl + O_2$</td>
<td>3.6(-11)</td>
<td>Leu</td>
</tr>
<tr>
<td>$Cl + O_2(a)$</td>
<td><9.0(-13)</td>
<td>This work</td>
</tr>
<tr>
<td>$Cl + O_2(b)$</td>
<td>1.6(-14)</td>
<td>"</td>
</tr>
<tr>
<td>$O_2(a) + wall + O_2$</td>
<td><1.0"</td>
<td>Choo and Leu (b)</td>
</tr>
<tr>
<td>$O_2(a) + N_2 + O_2$</td>
<td>1.0(-19)</td>
<td>Wayne</td>
</tr>
<tr>
<td>$O_2(a) + Cl + O_2 + Cl$</td>
<td>1.0(-16)</td>
<td>"</td>
</tr>
<tr>
<td>$O_2(a) + O + O_2 + O$</td>
<td>1.0(-16)</td>
<td>"</td>
</tr>
<tr>
<td>$O_2(a) + ClO + O_2 + ClO$</td>
<td>1.0(-16)</td>
<td>"</td>
</tr>
<tr>
<td>$O_2(b) + wall + O_2$</td>
<td>80.0"</td>
<td>Choo and Leu (a)</td>
</tr>
<tr>
<td>$O_2(b) + N_2 + O_2 + N_2$</td>
<td>1.7(-15)</td>
<td>"</td>
</tr>
<tr>
<td>$O_2(b) + Cl + O_2 + Cl$</td>
<td>1.0(-13)</td>
<td>"</td>
</tr>
<tr>
<td>$O_2(b) + O + O_2 + O$</td>
<td>1.0(-13)</td>
<td>"</td>
</tr>
<tr>
<td>$O_2(b) + ClO + O_2 + ClO$</td>
<td>1.0(-13)</td>
<td>"</td>
</tr>
</tbody>
</table>

" in units of s$^{-1}$.
**Estimated based on analogous reactions; see the review by Wayne (1985).

have been a calibration error in the observations. A discussion with one of the authors (Traub, 1987, private communication) led to a critical re-examination of the data analysis procedure used in the 1979 paper. It was concluded that calibration errors could have been at most a factor of 2, since two independent methods, based on the terrestrial airglow and the Venus continuum brightness were used, and both methods gave essentially the same result.

We can speculate on other explanations. The crucial clue is the source of O atoms. As was first pointed out by Winick and Stewart (1980), photolysis of SO_2 is a major source of O atoms in the stratosphere of Venus. Indeed, according to the models of Winick and Stewart (1980), and Yung and DeMore (1982), the photolysis rate of SO_2 on Venus is about 2×10^{15} cm2 s$^{-1}$ and is considerably higher than that of CO_2. However, most of the photolysis of SO_2 occurs in the lower part of the stratosphere, just above the cloud tops (~60 km). Any $O_2(a^1Ag)$ produced in this region would be effectively quenched, and could not contribute to the observed emissions under "normal" circumstances.

Consider now an unusual event, an episodic injection of SO_2 into the upper atmosphere of Venus. We shall leave the cause of this event unspecified, although volcanism is a possibility (Esposito, 1984). The presence of large quantities of SO_2 in the upper stratosphere (above 80 km), with mixing ratio equivalent to 10^{-5}, would lead to rapid photolysis and production of oxygen atoms. Recombination of these atoms either by (1) or the catalytic cycle (2) and (3) would yield a source of $O_2(a^1Ag)$. Detailed modeling of this event appears difficult since the $O_2(a^1Ag)$ airglow observations were carried out in 1975, before there were any quantitative data on SO_2 (Pioneer-Venus started collecting data in 1978). Since the normal SO_2 mixing ratio in the stratosphere is of the order of 10^{-7} or less, and enhancement of SO_2 concentration by two orders of magnitude is an unlikely event, the mechanisms we have discussed produced $O_2(a^1Ag)$ via the formation of a new $O-O$ bond and hence they are limited by the source of oxygen atoms. However, we would like to point out the following possibility:

$$ Cl + O_2 + M \rightarrow ClO_2 + M \quad (6) $$
$$ Cl + ClO_2 \rightarrow Cl_2 + O_2 \quad (7) $$
$$ Cl_2 + hv \rightarrow 2Cl \quad (8) $$

net $O_2 + O_2$

where $O_2 = O_2(a^1Ag)$ or $O_2(b^1Y^+g)$. In this mechanism no new $O-O$ bonds are formed. Chlorine serves as a catalyst for converting solar energy in the visible into chemical energy. Using the model of Yung and DeMore (1982) and the quantum yields listed in Table 3, we estimate an airglow brightness of 0.2 MR due to this mechanism. This is clearly insufficient to explain the observations.

Conclusions

A discharge flow apparatus with a chemiluminescence detector has been used to determine the quantum yields of $O_2(a^1Ag)$ and $O_2(b^1Y^+g)$ in the reaction $O + ClO \rightarrow Cl + O_2$. The results are summarized in Tables 2 and 3. Application of these results to explain the airglow brightness of Venus reveals a fundamental difficulty with a "normal" photochemical model. There may be another source of oxygen atoms in the upper atmosphere of Venus derived from SO_2 photolysis.
Table III. List of the relevant reactions that produce \(\text{O}_2(\text{a}^3\text{A}_g) \) and \(\text{O}_2(\text{b}^3\Sigma_g^+) \) in the atmosphere of Venus and their quantum yields

<table>
<thead>
<tr>
<th>Reactions</th>
<th>Quantum Yield</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{O} + \text{O} + \text{M} + \text{O}_2 + \text{M})</td>
<td>4(-2)</td>
<td>Wraight</td>
</tr>
<tr>
<td>(\text{Cl} + \text{O}_2 \rightarrow \text{ClO} + \text{O}_2)</td>
<td><2(-2)</td>
<td>Ogryzlo et al.</td>
</tr>
<tr>
<td>(\text{O} + \text{ClO} \rightarrow \text{Cl} + \text{O}_2)</td>
<td><2.5(-2)</td>
<td>Young and Black</td>
</tr>
<tr>
<td>(\text{Cl} + \text{HO}_2 \rightarrow \text{ClH} + \text{O}_2)</td>
<td>1.4(-2)</td>
<td>This work</td>
</tr>
<tr>
<td>(\text{H} + \text{HO}_2 \rightarrow \text{H}_2 + \text{O}_2)</td>
<td><2(-2)</td>
<td>Choo and Leu (b)</td>
</tr>
<tr>
<td>(\text{O} + \text{HO}_2 \rightarrow \text{OH} + \text{O}_2)</td>
<td><5(-4)</td>
<td>Choo and Leu (b)</td>
</tr>
<tr>
<td>(\text{Cl} + \text{HO}_2 \rightarrow \text{ClO} + \text{O}_2)</td>
<td>6(-3)</td>
<td>Keyser et al.</td>
</tr>
<tr>
<td>(\text{Cl} + \text{ClO} \rightarrow \text{Cl}_2 + \text{O}_2)</td>
<td><5(-4)</td>
<td>Washida et al.</td>
</tr>
<tr>
<td>(\text{Cl} + \text{Cl}_2 \rightarrow \text{Cl}_3)</td>
<td>2.8(-4)</td>
<td>Hislop and Wayne</td>
</tr>
<tr>
<td>(\text{Cl} + \text{Cl} \rightarrow \text{Cl}_2)</td>
<td><1(-2)</td>
<td>Keyser et al.</td>
</tr>
<tr>
<td>(\text{Cl} + \text{Cl}_2 \rightarrow \text{Cl}_3)</td>
<td><8(-3)</td>
<td>Keyser et al.</td>
</tr>
</tbody>
</table>

*Defined as the rate coefficient for the branch divided by the total rate coefficient.

"Normal" \(\text{SO}_2 \) abundance in the mesosphere would be too low. However, the atmosphere of Venus might have been strongly perturbed by an injection of \(\text{SO}_2 \) in 1975.

It is important that our laboratory kinetic-chemiluminescence results be confirmed using an independent experimental technique. Also, the \(\text{O}_2(\text{a}^3\text{A}_g) \) emission from Venus has been observed only once, and these observations should be repeated to establish the magnitude and nature of possible variations, along with the simultaneous observation of other chemical species such as CO, H\(_2\)O, HCl, HF, \(\text{O}_2 \), and \(\text{SO}_2 \).

Acknowledgments. We thank W. A. Traub, W. B. DeMore, M. Allen, J. P. Pinto, L. W. Esposito, D. V. Michelangeli, and L. D. Travi for helpful discussions. This research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. YLY was supported as a guest investigator on the Pioneer-Venus Project under contract NAG 2267 to the California Institute of Technology.

References

Choo, K. Y. and Leu, M. T., Rate constants for the quenching of metastable \(\text{O}_2(\text{b}^3\Sigma_g^+) \) molecules, Intern. J. Chem. Kin., 17, 1155-1167, 1985a.

Choo, K. Y. and Leu, M. T., Determination of \(\text{O}_2(\text{b}^3\Sigma_g^+) \) and \(\text{O}_2(\text{a}^3\text{A}_g) \) yields in \(\text{Cl} + \text{O}_2 \) and \(\text{Cl} + \text{O} \) reactions, J. Phys. Chem., 89, 4832-4837, 1985b.

Leu, M. T., Kinetics of the reaction \(\text{O} + \text{ClO} \rightarrow \text{Cl} + \text{O}_2 \), J. Phys. Chem., 88, 1394-1398.

(Received April 21, 1987; revised June 11, 1987; accepted July 6, 1987.)