Photochemical Production of Formaldehyde in Earth’s Primitive Atmosphere

Abstract. Formaldehyde could have been produced by photochemical reactions in Earth’s primitive atmosphere, at a time when it consisted mainly of molecular nitrogen, water vapor, carbon dioxide, and trace amounts of molecular hydrogen and carbon monoxide. Removal of formaldehyde from the atmosphere by precipitation can provide a source of organic carbon to the oceans at the rate of 10^{11} moles per year. Subsequent reactions of formaldehyde in primeval aquatic environments would have implications for the abiogenic synthesis of complex organic molecules and the origin of life.

The photochemical oxidation of methane (CH$_4$) is known to be a major source of formaldehyde (H$_2$CO) in Earth’s atmosphere (1). The presence of CH$_4$ and other reduced gases, in abundances greatly exceeding those expected in thermochimical equilibrium, arises from biological activity (2). This report is concerned with the production of H$_2$CO, by photochemical reactions in the atmosphere, at an early stage in Earth’s history before life has originated; H$_2$CO is one of the simple molecules that might have played a key role in the abiogenic synthesis of complex organic molecules on the primitive Earth.

The laboratory synthesis of H$_2$CO and other important organic molecules has been carried out by a number of workers. The initial mixtures used to simulate the composition of the primitive atmosphere have ranged from highly reducing (3) to slightly oxidizing (4) materials. Although the oxidation state of Earth’s atmosphere before life had originated is still highly uncertain, it is generally agreed that it would have been determined by the outgassing history and the composition of volatile gases. There is strong indirect evidence for a geologically rapid initial degassing of volatiles, rather than a continuous release over the history of the terrestrial planets. Supporting arguments for this view have been presented by Fanale (5) for Earth, by Walker (6) for Earth and Venus, and by McElroy et al. (7) for Mars. It is also unlikely that free iron would have been present in the upper mantle for more than 5×10^6 years after Earth had formed (8). Once native iron had been removed from the upper mantle by differentiation of the core and mantle, volcanic emissions of CH$_4$ would have been negligible and the composition of volcanic gases would not differ significantly from that of the present (8). However, the outgassed volatiles may have contained a small fraction (a few percent) of reduced compounds such as H$_2$ and CO, in amounts slightly greater than those observed today (6). It has been implicitly assumed by earlier workers that the reduced materials was lost solely through the escape of H$_2$ from the exosphere.

Our study raises the possibility of the production of reduced organic carbon from this material.

The major atmospheric constituents after Earth had differentiated should be CO$_2$, N$_2$, and H$_2$O (8), with smaller amounts of reduced gases such as H$_2$ and CO. For the purposes of this investigation, we have assumed that the abundances of CO$_2$, N$_2$, and H$_2$O are the same as today’s and that the abundance of H$_2$ was governed by the balance between volcanic release, the escape of hydrogen atoms, and photochemical reactions. The mixing ratio of H$_2$ in the atmosphere was calculated to be of the order of 10^{-3} (9). Except for the absence of a stratospheric thermal inversion, the thermal structure was also taken to be the same as the present. The reactions and rate coefficients used in the photochemical model are presented in Table 1 (10).

In the absence of shielding by O$_2$, CO$_2$ and H$_2$O are photolyzed in the troposphere according to the reactions

$$\text{CO}_2 + h\nu \rightarrow \text{CO} + \text{O} \quad (J1)$$
$$\text{H}_2\text{O} + h\nu \rightarrow \text{H} + \text{OH} \quad (J2)$$

Hydrogen atoms, formed in reaction J2, react with CO to yield formyl radicals (HCO) by

$$\text{H} + \text{CO} + \text{M} \rightarrow \text{HCO} + \text{M} \quad (R7)$$

The HCO radicals are removed by the following paths (11)

$$\text{HCO} + \text{H} \rightarrow \text{H}_2 + \text{CO} \quad (R8)$$
$$\text{HCO} + h\nu \rightarrow \text{H} + \text{CO} \quad (J3)$$
$$\text{HCO} + \text{HCO} \rightarrow \text{H}_2\text{CO} + \text{CO} \quad (R9)$$

The production of H$_2$CO from CO$_2$ is described by the following reaction sequence

$$2(\text{CO}_2 + h\nu \rightarrow \text{CO} + \text{O}) \quad (J1)$$
$$2(\text{H}_2\text{O} + h\nu \rightarrow \text{H} + \text{OH}) \quad (J2)$$
$$2(\text{H} + \text{CO} + \text{M} \rightarrow \text{HCO} + \text{M}) \quad (R7)$$
$$\text{HCO} + \text{HCO} \rightarrow \text{H}_2\text{CO} + \text{CO} \quad (R9)$$
$$\text{CO} + \text{OH} \rightarrow \text{CO}_2 + \text{H} \quad (R5)$$
$$2(\text{O} + \text{H}_2 \rightarrow \text{OH} + \text{H}) \quad (R2)$$
$$3(\text{OH} + \text{H}_2 \rightarrow \text{H}_2\text{O} + \text{H}) \quad (R1)$$
$$3(\text{H} + \text{H} + \text{M} \rightarrow \text{H}_2 + \text{M}) \quad (R6)$$

which may be summarized as

$$\text{CO}_2 + 2\text{H}_2 \rightarrow \text{H}_2\text{CO} + \text{H}_2\text{O}$$

In our standard photochemical model, the abundances of the major atmospheric gases are as follows: N$_2$, 0.8 bar; H$_2$O, 0.012 bar; CO$_2$, 2.4 x 10^{-4} bar; CO, 2.4 x 10^{-7} bar; and H$_2$, 8.0 x 10^{-4} bar (12).

![Fig. 1](https://example.com/fig1.png)

Fig. 1. Concentrations of important minor species in the standard model. The surface mixing ratios of N$_2$, H$_2$O, CO$_2$, CO, and H$_2$ are 1, 1.5 x 10^{-4}, 3 x 10^{-4}, 3 x 10^{-7}, and 1 x 10^{-7}, respectively. Except for H$_2$O, these gases are well mixed throughout the troposphere. The height-independent eddy diffusion coefficient is 104 cm2 sec$^{-1}$. **
constituents are shown in Fig. 1. Production and loss rates of HCO radicals and H₂CO are given in Fig. 2. Most of the H₂CO (≈99 percent) is destroyed by photolysis (reactions J4 and J5). However, a small fraction is incorporated into rain droplets and delivered to the oceans. We calculated the rate of removal of H₂CO from the atmosphere by precipitation, using the scavenging coefficients of Wofsy (13) for H₂CO in the present atmosphere. For the standard model the rainout rate of H₂CO was 2.8 × 10^19 molecule cm⁻² sec⁻¹. A variety of models were also constructed to study the sensitivity of our results to the choice of the essential input parameters (14).

The atmospheric abundance of CO₂ was controlled by a number of processes, including volcanic release, the weathering of surface rocks, and dissolution in the oceans. It is most likely (15) that the partial pressure of CO₂ in the primitive atmosphere was buffered at about 2 × 10⁻³ bar by the latter two processes. However, recent work (16) suggests a somewhat higher concentration of CO₂ in the primitive atmosphere. In this case, the production and subsequent rainout rate of H₂CO could greatly exceed that calculated in our standard model (14). Our results are also somewhat sensitive to the thermal structure. Knauth and Epstein (17) have suggested that surface temperatures could have reached 340 K during the early Archean (3.7 × 10⁹ years ago). In this calculation, the distribution of relative humidity was held fixed at 50 percent (14).

For the case of an H₂ mixing ratio of 10⁻³, the concentration of O₂ is exceedingly small. The tropospheric profile of O₂ is governed, in this case, by photochemical equilibrium. Later evolutionary stages may be represented by the models, in which the H₂ abundance has decreased. In addition, the emergence of O₂, perhaps because of photosynthesis (18), would have curtailed the production of H₂CO. This would have occurred through reactions such as

\[\text{O} + \text{HCO} \rightarrow \text{OH} + \text{CO} \] (R12)

\[\text{O₂} + \text{HCO} \rightarrow \text{HO₂} + \text{CO} \] (R13)

The value given for the wet removal of H₂CO, in the standard model, is sufficient to fill the oceans, at their present volume, to a 10⁻⁶M solution in 10 × 10⁶ years. At this concentration, H₂CO in solution may polymerize (19). The results of Ponnamperruma (20) indicate that, in the presence of ultraviolet radiation of wavelengths near 2800 Å, polymerization may take place in a 3 × 10⁻⁶M solution of H₂CO. Other processes may also have occurred (4). However, this does not alter the conclusion that simple organic molecules could have been delivered to the oceans from photochemical reactions in the atmosphere under weakly reducing conditions. Further laboratory studies should be performed to assess the factors governing the production and stability of H₂CO in conditions appropriate to the primitive Earth.

JOSEPH P. PINTO
Goddard Institute for Space Studies,
New York 10025

G. RANDALL GLADSTONE
YUK LING YUNG
California Institute of Technology,
Pasadena 91125

References and Notes
Ganymede: A Relationship Between Thermal History and Crater Statistics

Abstract. An approach for factoring the effects of a planetary thermal history into a predicted set of crater statistics for an icy satellite is developed and forms the basis for subsequent data inversion studies. The key parameter is a thermal evolution-dependent critical time for which craters of a particular size forming earlier do not contribute to present-day statistics. An example is given for the satellite Ganymede and the effect of the thermal history is easily seen in the resulting predicted crater statistics. A preliminary comparison with the data, subject to the uncertainties in ice rheology and impact flux history, suggests a surface age of 3.8 \times 10^9 years and a radionuclide abundance of 0.3 times the chondritic value.

Geomorphic evolution of impact craters on planetary surfaces, created over a wide range of geologic time and a wide spectrum of sizes, provides insight into the temporal behavior of endogenic modification processes. This report presents a simple architecture for generating a set of predicted cumulative impact crater curves reflecting endogenic modification processes on Ganymede. The study was motivated by Voyager spacecraft observations of a relative deficiency of large impact craters (Fig. 1).

A thermal history model is specified and related directly to the viscosity history, the functional forms being well known in terms of flow laws for geologic materials. The mechanism of crater modification is viscous relaxation, dependent on crater size and the explicit behavior of viscosity with depth. A crater of size D on the surface of Ganymede will have a limited lifetime that depends explicitly on the time of crater formation. This initial model adopts a practical definition of lifetime in terms of a detectability limit based on a critical crater depth, $q_{c}(D)$. Craters shallower than $q_{c}(D)$ are not detectable; the specific value of this parameter is an empirical measure from any photograph and is based on resolution, lighting angle, and albedo variation. The lifetime of a crater, $t_{c}(D)$, is the time differential between creation at time t and the moment when crater depth is less than $q_{c}(D)$. A critical time $t_{c}(D)$ is that point in geologic history when $L(t_{c})$ extends exactly to the present (D).

The predicted cumulative crater statistic, $\Sigma(D,t)$, is written as the integral over a differential functional $N(D,t)$ such that

$$\Sigma(D,t) = \int_{0}^{\infty} N(D,t') dD'$$

(1)

and is the number of craters of size D that exist on a surface formed at time t; the variable t' is max[t, $t_{c}(D)$]. The interpretation of t' in $N(D,t')$ is clear if we envision a surface, formed at time t, that collects craters to the present. We could then those craters in the present epoch but it is clear that by definition if $t < t_{c}(D)$, craters of size D on the surface formed at t will not last to the present and be counted. Conversely, if $t > t_{c}(D)$, craters of size D will persist and be counted.

For a thermal history we assume a scenario starting 4.6 \times 10^9 years ago with a silicate core containing a chondritic complement of radiogenic heat sources, a liquid water mantle, and a surface temperature, T_{o}, of 100 K. At all times in the history of Ganymede, the Rayleigh number for the mantle is supercritical and convection is the dominant mode of heat transport. The freezing time of the liquid water mantle has been described (3). Us-

11. Note that R and R8 constitute an effective cycle for the catalytic recombination of atomic hydrogen and molecular hydrogen also accounts for the difference in the computed atomic hydrogen densities at low altitudes between this model and the model in Ref. 3. The S. C. Liu, T. M. Donahue, J. Geophys. Res. 84, 3097 (1979).

12. The one-dimensional model extends from 0 to 120 km with a vertical resolution of 2 km, based on the numerical scheme developed by M. Al- len, J. W. Waters (in preparation). The equations of continuity are solved for an unknown, but spatial transport of long-lived species is described in terms of eddy diffusion. For the standard model, a uniform value of the eddy diffusion coefficient (K) of 10^{7} cm^2 sec^-1 was chosen. Concentrations of the major species H_2, CO, and H_2O were fixed at the lower boundary, and a zero flux was specified for CO. Concentrations of radical species were determined on the basis of their photochemical production and loss rates. A flux of reduced material of 10^{10} cm^-3 sec^-1 (mostly as H_2O) is required at the lower boundary, in order to maintain the steady state.

14. For H_2 mixing ratios of 10^{-3}, 10^{-4}, and 10^{-5}, the HCO_3 ratio is 1.0, 1.7 \times 10^{-4}, and 1.0 \times 10^{-5} molecule cm^-2 sec^-1, respectively. For CO mixing ratios of 6×10^{-6}, 1.2×10^{-6}, and 3×10^{-6}, the rainout rate is 4.8 $\times 10^{-6}$, 1.2 $\times 10^{-6}$, and 3.1 $\times 10^{-7}$ molecule cm^-2 sec^-1. Adjusting the model for K of 1.0, 10^{-6} leads to rainout rates of 1.9 $\times 10^{-6}$, 4.5 $\times 10^{-6}$, and 1.7 $\times 10^{-7}$ molecule cm^-2 sec^-1. Adopting a uniform value for K of 1.0 $\times 10^{-6}$ leads to a rainout rate of 2.3 $\times 10^{-6}$ molecule cm^-2 sec^-1, and raising the values of λ_1 by 10 percent to 2.1 $\times 10^{-6}$ leads to a rainout rate of 8.8 $\times 10^{-6}$ molecule cm^-2 sec^-1.

15. F. P. Fanale, personal communication.