MV/cm are shown. The change of R_{Hall} as a function of time, t, is displayed in Fig. 3A. Because the magnitude of $\mu_e H_t = -0.2 \, \mu_T$ is smaller than the coercive force $\mu_e H_c = -0.5 \, \mu_T$ under $E = -1.5 \, \text{MV/cm}$, the state remains at point A until we switch E to 0 at $t = 25 \, \text{s}$. There is an absence of relaxation in this 25-s period, which indicates that the state is stable. In response to the switching, the sign of R_{Hall} changes from positive to negative, showing that electrical switching triggers magnetization reversal. Because $|H_c| < |H_d|$ at $E = 0 \, \text{V/cm}$, the electrical switching brings the state to point B of the inset. Once the magnetization is reversed, the sign of R_{Hall} and thus M remains negative and shows only a small variation when E is switched back and forth between 0 and $-1.5 \, \text{MV/cm}$, as shown by region C and region D (corresponding to point C and D in the inset, respectively). This electrically assisted magnetization reversal ("assisted" because a small negative magnetic field is needed) without changing applied magnetic fields or temperature demonstrates the possibility of a new scheme for Curie point writing, where magnetization reversal is assisted by making the system closer to or making it go beyond its Curie temperature (12).

At a higher temperature range, one expects to be able to completely demagnetize the material solely by applying an external electric field without resorting to conventional techniques such as increasing temperature or using oscillating magnetic fields. With sample B at 33 K (Fig. 3B), the $R_{\text{Hall}} - \mu_e H$ hysteresis loop shown in closed triangles under $E = -1.5 \, \text{MV/cm}$ is measured. Then E is set to $+1.5 \, \text{MV/cm}$, which makes the $R_{\text{Hall}} - \mu_e H$ curve a linear one with no hysteresis (closed circles). Switching back E to $-1.5 \, \text{MV/cm}$, one can obtain an initial curve (i.e., a virgin curve; open triangles), demonstrating an isothermal demagnetization of a ferromagnetic material. The initial magnetization curve suggests that domain nucleation is responsible for the magnetization reversal in (In,Mn)As, as opposed to domain pinning, because the magnetization of the initial curve reaches saturation at a magnetic field much smaller than the coercive field in the hysteresis loop (13). We expect that well-developed magnetic domains similar to the one in a ferromagnetic semiconductor such as (Ga,Mn)As (14–16) are present in (In,Mn)As as a result of the long-range nature of carrier-mediated ferromagnetic interaction, even though (In,Mn)As is a dilute magnetic alloy.

Because electrical manipulation of magnetization processes presented here offers functionalities not previously accessible, ferromagnetic semiconductors are expected to play a key role in magnetoelectronics and spintronics (17, 18) once their T_c reaches well beyond room temperature. The highest T_c reported for (In,Mn)As and (Ga,Mn)As (19) in its thin-film form is 60 K ($x = 0.063$) (20) and 160 K ($x = 0.074$) (21), respectively, which is well accounted for by the Zener model of carrier-induced ferromagnetism (9, 10). Because theoretical prediction by the same model shows that T_c increases linearly with Mn concentration and $p^{1/3}$ with hole density, an increase of Mn concentration by a factor of 5 for (In,Mn)As and a factor of 2 for (Ga,Mn)As, without reducing hole concentration, should allow T_c to go beyond room temperature. This has not yet been realized experimentally; such a possibility has been hampered so far by the formation of NiAs-type MnAs as a second phase that reduces the Mn concentration in the host and/or by the formation of Mn interstitials (a double donor) that reduce the hole concentration (22–24). Other material systems like GaN and ZnO are predicted to show promise in realizing room-temperature carrier-induced ferromagnetism if the physics demonstrated for the model holds for these materials (9, 10).

References and Notes
16. We thank K. Takashani, S. Mitani, T. Dietl, M. Shirai, K. Ohtani, and Y. Ohno for useful discussions. This work was partially supported by the IT Program of RIK2002 from the Ministry of Education, Culture, Sports, Science and Technology of Japan, Grant-in-Aids and a Research Fellowship from the Japan Society for the Promotion of Science, and the Saskawa Scientific Research Grant from the Japan Scientific Society.

Supporting Online Material
www.sciencemag.org/cgi/content/full/1086608/DC1
Som Text
Fig. 51
Ice Core Records of Atmospheric N₂O Covering the Last 106,000 Years
Todd Sowers,* Richard B. Alley, Jennifer Jubenville
Paleoatmospheric records of trace-gas concentrations recovered from ice cores provide important sources of information on many biogeochemical cycles involving carbon, nitrogen, and oxygen. Here, we present a 106,000-year record of atmospheric nitrous oxide (N₂O) along with corresponding isotopic records spanning the last 30,000 years, which together suggest minimal changes in the ratio of marine to terrestrial N₂O production. During the last glacial termination, both marine and oceanic N₂O emissions increased by 40 ± 8%. We speculate that our records do not support those hypotheses that invoke enhanced export production to explain low carbon dioxide values during glacial periods.
ky) (6, 7). This implies that the observed N₂O concentration ([N₂O]) variations have been the result of changes in the source strength. N₂O oscillations have been documented during the cold Younger Dryas event and the one Dansgaard/Oeschger (D/O) event (number 8) that has been studied in detail. These events also have large documented fluctuations in atmospheric methane (CH₄) concentration that are likely the result of changes in CH₄ emissions from terrestrial wetlands. Wetland CH₄ emissions increase with temperature, primary productivity, and soil saturation (8–10). Terrestrial N₂O emissions behave similarly, but are highest for soils with between 60 and 90% water-filled pore spaces; at higher saturation, the low-redox conditions promote complete reduction of NO₃⁻ to N₂ gas, whereas in drier areas NO emissions dominate (11, 12).

Here, we extend the ice core N₂O record back to 106,000 years ago (106 ka) and provide atmospheric N₂O isotope results spanning the last glacial termination. Concentration measurements were made on 106 samples of Greenland Ice Sheet Project 2 (GISP II), central Greenland (73°N, 38°W), ice with gas ages ranging from 0.5 to 106 ka (10) by means of a dry extraction technique (13, 14). Samples integrating fewer than 30 years of atmospheric history are spaced on average 1.1 ky apart. The overall external precision and blank associated with the technique are ±5 and 4 ± 2 ppb, respectively (1σ errors). In addition, we measured 24 samples of ice from the Taylor Dome, Antarctica, ice core (77°47′S, 158° 43′E) for [N₂O], 8⁰₁₅N, and δ¹⁸O of N₂O using a previously described technique (15). The external precision for the 8¹⁵N and δ¹⁸O measurements is ±0.5‰ and ±2‰, respectively, based on six samples of ice with gas ages between 1785 and 1820 A.D. (1σ errors). The ages of the Taylor Dome samples were previously determined by correlating the CH₄ record from Taylor Dome into the GISP II record (16).

All data (concentration and isotopic) have been corrected for all mass-dependent fractionation processes (including gravitational fractionation) based on 8¹⁵N of N₂O data that were measured on each gas sample (17, 18).

The N₂O concentration data from the GISP II and Greenland Ice Core Project (GRIP), Greenland, and Dome C, Antarctica, cores are plotted in Fig. 1 (3). The ages for GRIP N₂O data have been transferred to the GISP II time scale for direct comparison (19). The N₂O data sets were generated with different extraction techniques that yield very similar N₂O records during overlapping periods, suggesting that, in general, the ice core records are likely to reflect paleoatmospheric N₂O fluctuations within experimental uncertainty. There are two major exceptions. First, the N₂O values from GISP II are low in the depth interval where air bubbles are transformed to solid clathrates [900 to 1400 m, gas ages of 4 to 8 ka (20)]. These results are readily explained by preferential incorporation of N₂O into, but incomplete gas recovery from, the solid air-hydrate phase [supporting online material (SOM) text]. Second, a few N₂O results from the GRIP core (11.8 and 38.9 ka) are anomalously high relative to results from neighboring samples (3). These high values are thought to be related to an unidentified artifact that may involve in situ N₂O that was liberated by microbial processes (15).

In the lower portion of Fig. 1 we plot the CO₂ records from the Taylor Dome and Vostok ice cores to complete the picture of changes in the concentration of major long-lived bioactive trace-gas species over the last 106 ky (21–23). We have used a Vostok gas chronology that had previously been tied to the GISP II gas chronology (24). Presently, the N₂O record is of lower resolution than either the CH₄ or the δ¹⁸Oice records; for comparison, we have resampled the CH₄, CO₂, and δ¹⁸Oice records at times for which we have N₂O data. The resampled curves are shown with solid lines in Fig. 1.

In Fig. 2 we present results from 21 measurements of the 8¹⁵N and δ¹⁸O of N₂O from the Taylor Dome ice core between 2.6 and 32.6 ka covering the last glacial termination and the Holocene. Unexpectedly, the isotope data show little variability over this period of rapid concentration change, despite the large differences in the characteristic isotope values for the marine and terrestrial N₂O (8¹⁵N values ~8 ± 3‰ and ~15 ± 15‰, δ¹⁸O values ~45 ± 5‰ and ~35 ± 15‰ (standard mean ocean water; SMOW) for marine and terrestrial sources, respectively) (25). The average 8¹⁵N and δ¹⁸O values from Taylor Dome over the last 33 ky are 11.1 ± 0.8‰ and 46.5 ± 1.7‰, respectively. These aver-

Department of Geosciences and the EMS Environment Institute, Pennsylvania State University, University Park, PA 16802, USA.

*To whom correspondence should be addressed. E-mail: sowers@geosc.psu.edu
age values are statistically indistinguishable from the preanthropogenic (1785 to 1819 A.D.) values obtained from the GISP II core (10.1 ± 0.6‰ and 47.4 ± 1‰, number of samples n = 6) and Eemian (115 to 130 ka) values from the Vostok core (10.1 ± 1.0‰ and 45.8 ± 0.8‰, n = 5) (15, 26).

The data sets in Figs. 1 and 2 can be used to test models of global biogeochemical cycles involving N₂O across a variety of time scales. With one exception (the Younger Dryas), we suggest that throughout the last 33 ky the ratio of terrestrial to marine N₂O emissions (T/MN₂O) has remained fairly constant. We obviously cannot exclude the possibility that there were substantial changes in T/MN₂O that were offset by tightly coupled changes in the characteristic isotope ratios of the sources and/or sinks that resulted in the nearly constant atmospheric values. However, a more parsimonious explanation would be that marine and terrestrial N₂O emissions have varied together, as suggested by a recent modeling study of the marine N₂O emissions during the Younger Dryas period (27).

We can place an upper limit on T/MN₂O variability based on the variability of the N₂O isotope measurements. Under steady conditions, the isotopic composition of atmospheric N₂O is dictated by the fraction of each source or sink multiplied by the characteristic isotope value. Assuming that the primary sink (stratospheric photolysis), its characteristic isotopic effect, and the isotopic values of the sources have remained constant, we can calculate the maximum change in T/MN₂O that is consistent with our measurements. The variability of all δ¹⁵N and δ¹⁸O values about the mean (±0.8‰ and 1.7‰, respectively) is similar to our external analytical precision [±0.5‰ and ±2‰ (15)]. This implies that the calculated change in T/MN₂O based on the measured isotope variability is likely to be larger than the true variability. The δ¹⁵N data are more precise and therefore provide the stronger constraint, indicating that T/MN₂O varied by less than 16% throughout the last 33 ky.

Model studies designed to simulate changes in the chemistry of the atmosphere during the last glacial period suggest that the primary sink for N₂O has remained effectively constant (±15%) over the last 18 ky (6, 7). Assuming that the lifetime of N₂O has remained constant (118 years), we can quantitatively assign changes in global sources based on the measured concentration changes. N₂O levels during the LGM were ~190 ppb, implying that global sources were ~7.7 Tg N/year. N₂O levels increased during the termination to ~265 ppb because of a 40% (190 to 265 ppb) increase in global N₂O sources. We can then use the δ¹⁵N values to calculate the magnitude of the change in marine and terrestrial N₂O sources during the termination. Using δ¹⁵N values for terrestrial and oceanic N₂O of ~15 and 8‰, respectively, and the isotope effect associated with stratospheric photolysis of 1.023 (26), we calculate that LGM terrestrial and oceanic N₂O emissions were 4.3 and 3.4 Tg N/year, respectively. Considering the concentration and isotope data together, we conclude that both terrestrial and oceanic N₂O emissions increased by 40 ± 8% during the last termination, accounting for the 40% increase in tropospheric N₂O loading.

Detailed inspection of the isotope results during the Younger Dryas interval (13 to 11.5 ka) suggests that the δ¹⁵N and δ¹⁸O values decreased, as one moves forward in time between 12.4 and 11.4 ka, by 1.8 and 5‰, respectively. This interval covers the end of the Younger Dryas period when atmospheric N₂O values increased by ~20 ppb. Although the measured isotope shift over this interval approximates our uncertainty envelope, the decrease in both δ¹⁵N and δ¹⁸O values over the same interval implies that the trends are probably significant. We believe that these anomalies may be related to enhanced terrestrial N₂O emissions (relative to marine emissions) near the end of the Younger Dryas. This agrees with and strengthens the model results of Goldstein et al. (27), which require a large increase in terrestrial emissions to explain the concentration change at the end of the Younger Dryas.

Figure 1 shows much shared variance among the disparate indicators [correlation coefficients (r) are greater than 0.6 and significantly different from zero between all pairs among N₂O, CH₄, CO₂, and δ¹⁸O in ice]. Because CO₂ is primarily controlled by marine processes (on millennial time scales), CH₄ by terrestrial processes, N₂O by both terrestrial and marine processes, and δ¹⁸O in ice can be viewed as a circum–North Atlantic climate record, the similarities and differences raise numerous fundamental questions about the climate system and the biogeochemical systems that cycle trace-gas species. We focus here on three questions.

First, the significant covariation between CO₂ and N₂O, and the covariation between marine and terrestrial sources of N₂O over the last 30 ky, may provide new insights into the origin of the glacial-interglacial CO₂ variations. Surface-water N₂O levels are generally controlled by N mineralization in the waters above the thermocline, as reflected in the positive correlation between [N₂O] and apparent oxygen utilization (AOU) in the modern ocean (28). If the positive N₂O-AOU relation observed today applies for the glacial ocean, then lowering of the surface-water partial pressure of CO₂ (pCO₂) during the LGM through enhanced export production would have promoted elevated oceanic N₂O levels that are not supported by our data. Our data are consistent with those scenarios that predict lowered pCO₂ levels resulting from higher alkalinity, increased stratification, or both (29, 30).

Second, lowered oceanic N₂O emissions during the LGM may reflect decreased emissions from the continental shelves when sea levels were much lower. Present-day estimates of global N₂O emissions from continental shelves range from 0.6 to 2.7 Tg N/year (31, 32). These estimates are comparable to the additional oceanic N₂O emissions that are required to satisfy our concentration and isotope records (1.4 Tg N/year).
Figure 1 shows that CH₄ and N₂O varied together not only on orbital time scales (the clear precessional signal and slower variations), but also on millennial time scales during the Younger Dyas, Dansgaard/Oeschger interstadial 8, and other events between about 40 and 90 ka. This observation is consistent with monsoonal coupling of terrestrial and marine realms. During periods of increased monsoonal activity (interstadial periods), enhanced upwelling of nutrient-rich water in the Arabian Sea and the Eastern Tropical Pacific supported increased marine productivity and thus increased organic-matter rain. The enhanced flux of organic matter caused a reduction in mid-water oxygen concentration, thereby increasing denitrification; a consequent increase in N₂O production ultimately led to increased N₂O emissions in upwelling areas modulated by monsoonal circulation patterns (33, 34). At the same time, enhanced monsoonal rainfall would have expanded the region of wet soils producing CH₄ and N₂O.

One notable exception to the general CH₄/ N₂O correspondence occurs during the cooling event that began about 80 ka. N₂O levels remained high for ~7 ky after CH₄ levels dropped precipitously. Perhaps during this period, the CH₄:N₂O temporal relation may reflect greater initial sensitivity of CH₄ emissions to terrestrial drying. Complete soil saturation optimizes CH₄ production, whereas reduced N₂O emissions from drying of some regions below the 60 to 90% saturated window for optimal N₂O production are partially offset by drying of wetter areas into the optimum N₂O emission window. Additionally, because high northern latitudes were more important for CH₄ (~18% of preanthropogenic CH₄ emissions in latitude bands north of 40°N (8)) than for N₂O (~9% (35)), ice-sheet advance may have impacted CH₄ emissions more directly and quickly than N₂O emissions. Additional isotopic analyses on samples before 30 ka might clarify the relative roles of marine and terrestrial sources of N₂O in these cases, and why this behavior is not shown strongly at other times.

References and Notes
1. Current N₂O emissions from the terrestrial biosphere are estimated to be 12 ± 3 Tg N/year, and preanthropogenic estimates are ~7 Tg N/year (12, 36-39). Marine N₂O emissions are estimated to be 4 ± 2 Tg N/year (40). About 98% of the total atmospheric N₂O sink occurs in the stratosphere. Mischswaner et al. (42) estimated the 1980 value to be 12 ± 4 Tg N/year, corresponding to a mean atmospheric lifetime of 118 ± 25 years (43).

8. Supported by NSF Office of Polar Programs (grants 9526556 to T.A.S. and 0087160 and 0126187 to R.B.A.). Special thanks to K. Keller, R. Najjar, J. Fluckiger, and two anonymous reviewers who greatly improved the manuscript.

Supporting Online Material
www.sciencemag.org/cgi/content/full/301/5635/945/DC1

340,000-Year Centennial-Scale Marine Record of Southern Hemisphere Climatic Oscillation

Katharina Pahnke,1,* Rainer Zahn,1,2,‡ Henry Elderfield,3 Michael Schulz4

In order to investigate rapid climatic changes at mid-southern latitudes, we have developed centennial-scale paleoceanographic records from the southwest Pacific that enable detailed comparison with Antarctic ice core records. These records suggest close coupling of mid-southern latitudes with Antarctic climate during deglacial and interglacial periods. Glacial sections display higher variability than is seen in Antarctic ice cores, which implies climatic decoupling between mid- and high southern latitudes due to enhanced circumpolar-Antarctic circulation. Structural and temporal similarity with the Greenland ice core record is evident in glacial sections and suggests a degree of interhemispheric synchrony not predicted from bipolar ice core correlations.

Climatic instability and abrupt changes are recognized features of the last glacial period and have been found in climate archives worldwide (1–9). To date, the best-resolved records of changes in the Southern Hemisphere are from Antarctic ice cores (5, 6). The dearth of continuous high-resolution palaeoclimatic records from mid- and high southern latitudes precludes the tracing of climatic signals from Antarctic records to the extra-polar Southern Hemisphere. This highlights the importance of establishing fine-scale marine records that enable the mapping of millennial to submillennial climatic chang-